525. Problem 38.43 (RHK) A long wire carries a current
|
Solution: Click For PDF Version Let the radius of the wire be R. It is given that it is carrying a
current
We use the Ampere’s law for finding the magnetic field within the wire at a distance r from its axis. The magnetic field will be cylindrical. Therefore, Magnetic energy volume density is given by Therefore, the energy density of the magnetic field at a distance r from the
axis of the wire carrying current
The energy stored as magnetic field within a length l of the wire will therefore be given by the following integral: The inductance of a length l of the wire can now be found from the relationship Therefore,
|