525.

Problem 38.43 (RHK)

A long wire carries a current i uniformly distributed over a cross section of the wire. (a) We have to show that the magnetic energy of a length l stored within the wire equals $\mu_{0} i^{2} l / 16 \pi$. (b) We have to show that the inductance for a length l of wire associated with the flux inside the wire is $\mu_{0} l / 8 \pi$.

Solution:

Let the radius of the wire be R. It is given that it is carrying a current i. Therefore, the current density in the wire is

$$
j=\frac{i}{\pi R^{2}} .
$$

We use the Ampere's law for finding the magnetic field within the wire at a distance r from its axis. The magnetic field will be cylindrical. Therefore,
$2 \pi r B(r)=\mu_{0} j\left(\pi r^{2}\right)$

$$
=\mu_{0} \frac{i}{\pi R^{2}} \times\left(\pi r^{2}\right)
$$

$\therefore B(r)=\frac{\mu_{0} i r}{2 \pi R^{2}}$.
Magnetic energy volume density is given by
$U=\frac{B^{2}}{2 \mu_{0}}$.
Therefore, the energy density of the magnetic field at a distance r from the axis of the wire carrying current i will be

$$
U(r)=\frac{B^{2}(r)}{2 \mu_{0}}=\frac{\mu_{0} i^{2} r^{2}}{8 \pi^{2} R^{4}}
$$

The energy stored as magnetic field within a length 1 of the wire will therefore be given by the following integral:

$$
\begin{aligned}
\mathrm{U} & =\int_{0}^{R} 2 \pi r l d r \times \frac{\mu_{0} i^{2} r^{2}}{8 \pi^{2} R^{4}} \\
& =\frac{\mu_{0} i^{2} l}{4 \pi R^{4}} \int_{0}^{R} r^{3} d r=\frac{\mu_{0} i^{2} l}{16 \pi}
\end{aligned}
$$

The inductance of a length l of the wire can now be found from the relationship
$\mathrm{U}=\frac{1}{2} L i^{2}$.

Therefore,

$$
L=\frac{\mu_{0} l}{8 \pi} .
$$

