181. Problem 2.44 (R) A, on the Earth, is sending signals with a flashlight every six minutes. B is on a space station that is stationary with respect to the Earth. C is on a rocket travelling from A to B with a constant velocity of 0.6c relative to A. (a) We have to find the time interval between the signals received by B from A; (b) the time interval between the signals received by C from A; and (c) if C flashes a light using intervals equal to those he received from A then the interval between the signals received by B from C.
|
Solution: Click For PDF Version For solving this problem we have to use the longitudinal Doppler effect in relativity. Let the source frequency be . If the source and the observer move away from one another with velocity V, then the observed frequency is related to and the relative velocity V as
As period is the reciprocal of the frequency, , we have
If the source and the observer move toward one another with velocity V, the Doppler shifted frequency and period are related to the transmitting frequency,, and period, , as
(a) It is given that the space station B is stationary with respect to the Earth, A. Therefore, there will not be any Doppler shift between the signals transmitted from A and received by B. If the signals are transmitted by A every six minutes, . The period of signals received by B will also be 6 min. (b) As the source A and the receiver C are moving away from one another with velocity 0.6 c, the period of signals received by C transmitted from A with period will be Doppler shifted. It will be
(c) As the source C and the observer B are moving toward one another with velocity V = 0.6 c the period of signals transmitted by C, , and received by B will be Doppler shifted. We have
|