181.

Problem 2.44(R)

A, on the Earth, is sending signals with a flashlight every six minutes. B is on a space station that is stationary with respect to the Earth. C is on a rocket travelling from A to B with a constant velocity of $0.6 c$ relative to A. (a) We have to find the time interval between the signals received by B from A; (b) the time interval between the signals received by C from A; and (c) if C flashes a light using intervals equal to those he received from A then the interval between the signals received by B from C.

Solution:

For solving this problem we have to use the longitudinal Doppler effect in relativity.

Let the source frequency be v_{0}. If the source and the observer move away from one another with velocity V, then the observed frequency v is related to v_{0} and the relative velocity V as

As period τ is the reciprocal of the frequency, v, we have

$$
\tau=\tau_{0} \sqrt{\frac{c+V}{c-V}} .
$$

If the source and the observer move toward one another with velocity V, the Doppler shifted frequency and period are related to the transmitting frequency, v_{0}, and period, τ_{0}, as

$$
v=v_{0} \sqrt{\frac{c+V}{c-V}}
$$

and

$$
\tau=\tau_{0} \sqrt{\frac{c-V}{c+V}}
$$

(a)

It is given that the space station B is stationary with respect to the Earth, A. Therefore, there will not be any Doppler shift between the signals transmitted from A and received by B. If the signals are transmitted by A every six minutes, $\tau_{0}=6 \mathrm{~min}$. The period of signals received by B will also be 6 min .
(b)

As the source A and the receiver C are moving away from one another with velocity $0.6 c$, the period of signals received by C transmitted from A with period $\tau_{0}=6$ min will be Doppler shifted. It will be

$$
\tau_{C}=6 \times \sqrt{\frac{c+0.6 c}{c-0.6 c}} \min =12 \mathrm{~min}
$$

(c)

As the source C and the observer B are moving toward one another with velocity $V=0.6 c$ the period of signals transmitted by C, τ_{C}, and received by B will be Doppler shifted. We have

$$
\tau_{B}=\tau_{C} \sqrt{\frac{c-V}{c+V}}=12 \times \sqrt{\frac{0.4}{1.6}} \mathrm{~min}=6 \mathrm{~min}
$$

