269. 

## Problem 10.14 (Zemansky)

Two identical bodies of constant heat capacity are at the same initial temperature $T_{i}$. A refrigerator operates between these two bodies until one body is cooled to temperature $T_{2}$. If the bodies remain at constant pressure and undergo no change of phase, we have to show that the minimum amount of work needed to do this is

$$
W(\min )=m c_{p}\left(\frac{T_{i}^{2}}{T_{2}}+T_{2}-2 T_{i}\right)
$$

## Solution:

We are given that we have two identical bodies each of mass $m$ at temperature $T_{i}$. A refrigerator operates between these two bodies until one body is cooled to temperature $T_{2}$. Let the amount of work done on the refrigerator in cooling of body 2 from temperature $T_{i}$ to $T_{2}$ be $W$. The quantity of heat extracted out of body 2 will be
$Q=m c_{p}\left(T_{i}-T_{2}\right)$.
And the amount of heat delivered by the refrigerator to the body 1 will be
$Q^{\prime}=Q+W$.
Temperature of body 1 will have got raised from $T_{i}$ to $T^{\prime}$ such that

$$
\begin{aligned}
m c_{p}\left(T^{\prime}-T_{i}\right) & =Q+W \\
& =m c_{p}\left(T_{i}-T_{2}\right)+W .
\end{aligned}
$$

From this equation, we find
$T^{\prime}=2 T_{i}-T_{2}+\frac{W}{m c_{p}}$
We next calculate the change in entropy of the body 1 and that of the body 2 .

$$
\Delta S_{1}=m c_{p} \ln \left(\frac{T^{\prime}}{T_{1}}\right)=m c_{p} \ln \left(\frac{2 T_{i}-T_{2}+\frac{W}{m c_{p}}}{T_{i}}\right) .
$$

And
$\Delta S_{2}=m c_{p} \ln \left(\frac{T_{2}}{T_{i}}\right)$.
The total change of entropy in the process will be

$$
\Delta S=\Delta S_{1}+\Delta S_{2}=m c_{p} \ln \left(\frac{\left(2 T_{i}-T_{2}+\frac{W}{m c_{p}}\right) \times T_{2}}{T_{i}^{2}}\right)
$$

From the entropy principle
$\Delta S \geq 0$.
Minimum amount of work will be done on the refrigerator in the process for which
$\Delta S=0$.
That is
$\frac{\left(2 T_{i}-T_{2}+\frac{W(\mathrm{~min})}{m c_{p}}\right) \times T_{2} D}{T_{i}^{2}}=1$,
or
$W(\min )=m c_{p}\left(\frac{T_{i}^{2}}{T_{2}}+T_{2}-2 T_{i}\right)$.

