265.

Problem 26.45 (RHK)

A $12.6-\mathrm{g}$ ice cube at $-10.0^{\circ} \mathrm{C}$ is placed in a lake whose temperature is $+15.0^{\circ} \mathrm{C}$. We have to calculate the change in entropy of the system as the ice cube comes to thermal equilibrium with the lake.

Solution:

In the process of reaching thermal equilibrium the 12.6 g of ice at $-10.0^{\circ} \mathrm{C}$ will first get heated to $0^{\circ} \mathrm{C}$, then will melt by acquiring heat of fusion, and next will get heated to $+15.0^{\circ} \mathrm{C}$, the temperature of the lake. We can assume the lake to be an infinite heat reservoir at $+15.0^{\circ} \mathrm{C}$. The total heat for the sequence of changes in the ice cube at $-10.0^{\circ} \mathrm{C}$ to its becoming water at $+15.0^{\circ} \mathrm{C}$ will be supplied by the lake, which, as already mentioned, functions like a heat reservoir at a constant temperature. We will use the following data in calculating the total change of entropy of the system.

Heat capacity of water, $c_{w}=4190 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$,
heat capacity of ice, $c_{i}=2220 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$, heat of fusion, $L_{\text {fusion }}=333 \mathrm{~kJ} \mathrm{~kg}^{-1}$.
(i) The change in entropy of the ice when the ice cube gets heated from $-10.0^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$,

$$
\begin{aligned}
\Delta S_{1}=\int_{263}^{273} \frac{m_{i c e} c_{V}}{T} d T & =12.6 \times 10^{-3} \times 2220 \times \int_{263}^{273} \frac{d T}{T} \mathrm{~J} \mathrm{~K}^{-1} \\
& =1.0438 \mathrm{~J} \mathrm{~K}^{-1} .
\end{aligned}
$$

(ii) The change in entropy of the ice in melting of 12.6 g of ice at $0^{\circ} \mathrm{C}$,

$$
\begin{aligned}
\Delta S_{2} & =\frac{12.6 \times 10^{-3} \times 333 \times 10^{3}}{273} \mathrm{~J} \mathrm{~K}^{-1} \\
& =15.369 \mathrm{~J} \mathrm{~K}^{-1} .
\end{aligned}
$$

(iii) The change in entropy of the 12.6 g of water when it gets heated from $0^{\circ} \mathrm{C}$ to $+15.0^{\circ} \mathrm{C}$, the temperature of the lake,

$$
\begin{aligned}
\Delta S_{3}=\int_{273}^{288} \frac{m_{i} c_{w} d T}{T} & =12.6 \times 10^{-3} \times 4190 \times \ln \left(\frac{288}{273}\right) \mathrm{J} \mathrm{~K}^{-1} \\
& =2.8238 \mathrm{~J} \mathrm{~K}^{-1} .
\end{aligned}
$$

(iv) The total amount of heat supplied by the lake in the processes (i), (ii) and (iii) is

$$
\begin{aligned}
Q & =12.6 \times 10^{-3}(2220 \times(0-(-10.0))+333000+4190 \times(15-0)) \mathrm{J} \\
& =5267.4 \mathrm{~J}
\end{aligned}
$$

The change of entropy of the lake will be
$\Delta S_{4}=-\frac{5267.4}{288} \mathrm{~J} \mathrm{~K}^{-1}=-18.2896 \mathrm{~J} \mathrm{~K}^{-1}$.
Therefore, the total change of entropy of the system will be

$$
\begin{aligned}
\Delta S=\Delta S_{1}+\Delta S_{2}+\Delta S_{3}+\Delta S_{4} & =(1.0438+15.369+2.8238-18.2896) \mathrm{J} / \mathrm{K} \\
& =0.947 \mathrm{~J} \mathrm{~K}^{-1} .
\end{aligned}
$$

