263.

Problem 26.40 (RHK)

One mole of an ideal diatomic gas is caused to pass through the cycle shown on the $p V$ diagram, where $V_{2}=3 V_{1}$. We have to determine in terms of p_{1}, V_{1}, T_{1} and R : (a) p_{2}, p_{3}, and T_{3}, and (b) $\mathrm{W}, \mathrm{Q}, \Delta E_{\mathrm{int}}$, and ΔS for all the three processes.

Solution:

We are considering thermodynamic cyclic processes of one mole of a diatomic ideal gas. For a diatomic gas the ratio of specific heats $\gamma=7 / 5$.

Three states of the gas marked by labels 1,2 , and 3 are connected by thermodynamic processes shown in the $p V$
diagram. Pressure, volume, and temperature of the gas at the point 1 are
$p=p_{1}$,
$V=V_{1}$,
and
$T=T_{1}$
Using the ideal gas equation of state, we note that the values of volume, pressure, and temperature at 2 are $V=3 V_{1}$,
$p=\frac{1}{3} p_{1}$,
and
$T=T_{1}$.

Volume at 3 is
$V=3 V_{1}$.
States 1 and 3 are connected by an adiabatic process.
Therefore,
$p_{3}\left(3 V_{1}\right)^{\gamma}=p_{1} V_{1}^{\gamma}$,
or
$p_{3}=\frac{1}{3^{\gamma}} p_{1}$.
And, $T_{3}=\frac{1}{3^{\gamma-1}} T_{1}$.

We have already noted that for a diatomic ideal gas $\gamma=7 / 5$.

Process connecting the states 1 and 3 is isothermal.
Therefore,
$E_{\mathrm{int}, 2}-E_{\mathrm{intr}, 1}=0$.
Work done on the gas will be
$W_{12}=-\int_{V_{1}}^{V_{2}} p d V=-\int_{V_{1}}^{V_{2}} \frac{R T_{1}}{V} d V=-R T_{1} \ln \left(\frac{V_{2}}{V_{1}}\right)=-R T_{1} \ln 3$.
And heat absorbed by the gas during this part of the cycle will be
$Q_{12}=-\left|W_{12}\right|=R T_{1} \ln 3$.
Change in entropy of the gas between the states 2 and 1 will be

$$
\Delta S_{12}=S_{2}-S_{1}=\frac{Q_{12}}{T_{1}}=R \ln 3 .
$$

Process joining states 3 and 2 takes place at constant volume. Therefore, no work is done on the gas during this process. Heat absorbed by the gas, Q_{23}, is equal to the change in internal energy between these two states.

$$
\begin{gathered}
Q_{23}=E_{\mathrm{int}, 3}-E_{\mathrm{int}, 2}=(\gamma-1)^{-1} R\left(T_{3}-T_{2}\right)=(\gamma-1)^{-1} R T_{1}\left(\frac{1}{3^{\gamma-1}}-1\right) \\
=-0.88 R T_{1} .
\end{gathered}
$$

Change in entropy

$$
\begin{aligned}
\Delta S_{23}=S_{3}-S_{2}=\int_{T_{2}}^{T_{3}} \frac{C_{V} d T}{T}=\frac{R}{(\gamma-1)} \ln \left(\frac{T_{3}}{T_{2}}\right) & =\frac{R}{(\gamma-1)} \ln \left(\frac{1}{3^{\gamma-1}}\right) \\
& =-R \ln 3 .
\end{aligned}
$$

States 1 and 3 are connected by an adiabatic process. In an adiabatic process there is no exchange of heat energy.

That is $Q_{31}=0$. Therefore,
$\Delta S_{31}=S_{3}-S_{1}=0$.
Work done on the gas during the adiabatic process will be

$$
W_{31}=\frac{1}{(\gamma-1)}\left(p_{1} V_{1}-p_{3} V_{3}\right)=\frac{1}{(\gamma-1)} p_{1} V_{1}\left(1-\frac{1}{3^{\gamma-1}}\right) .
$$

And,

$$
E_{\mathrm{intt}, 1}-E_{\mathrm{int}, 3}=\frac{R T_{1}}{(\gamma-1)} \times\left(1-\frac{1}{3^{\gamma-1}}\right)=0.88 R T_{1} .
$$

