261. 

## Problem 26.38 (RHK)

Suppose the same amount of heat energy, say, 260 J is transferred by conduction from a heat reservoir at temperature of 400 K to another reservoir, the temperature of which is (a) 100 K , (b) 200 K , (c) 300 K , and (d) 360 K . We have to calculate the changes in entropy and find the trend.

## Solution:

Temperature at the hot reservoir $T_{H}=400 \mathrm{~K}$.
Let the temperature of the cold reservoir to which heat is transferred by conduction from the hot reservoir be $T_{L} \mathrm{~K}$.

The amount of heat transferred by conduction from the hot reservoir to the cold reservoir $Q=260 \mathrm{~J}$.

Therefore, the change in entropy of the two reservoirs will be

$$
\begin{aligned}
\Delta S\left(T_{L}\right)=-\frac{Q}{T_{H}}+\frac{Q}{T_{L}} & =Q\left(\frac{T_{H}-T_{L}}{T_{H} T_{L}}\right) \\
& =\frac{260 \times\left(400-T_{L}\right)}{400 \times T_{L}} \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

We next compute $\Delta S\left(T_{L}\right)$ for
$T_{L}=100 \mathrm{~K}, 200 \mathrm{~K}, 300 \mathrm{~K}$, and 360 K .
We find
$\Delta S(100 \mathrm{~K})=1.95 \mathrm{~J} \mathrm{~K}^{-1}$,
$\Delta S(200 \mathrm{~K})=0.65 \mathrm{~J} \mathrm{~K}^{-1}$,
$\Delta S(300 \mathrm{~K})=0.216 \mathrm{~J} \mathrm{~K}^{-1}$,
and
$\Delta S(360 \mathrm{~K})=0.072 \mathrm{~J} \mathrm{~K}^{-1}$.
We note that the change in entropy of the two reservoirs decreases with decrease in difference in their temperatures.


