259.

Problem 26.37 (RHK)

An ideal gas undergoes an isothermal expansion at $77^{\circ} \mathrm{C}$, increasing its volume from 1.3 to 3.4 L . The entropy change of the gas is $24 \mathrm{~J} \mathrm{~K}^{-1}$. We have to find the amount of gas present in moles.

Solution:

Let us recall that in an isothermal process there is no change in the internal energy. Therefore, the work done by the gas in isothermal expansion from initial volume V_{i} to final volume V_{f} will be equal in magnitude to the amount of heat absorbed. The work done by the gas (n moles) in isothermal expansion from volume V_{i} to volume V_{f} will be

$$
|W|=\int_{V_{i}}^{V_{f}} p d V=n R T \int_{V_{i}}^{V_{f}} \frac{d V}{V}=n R T \ln \left(\frac{V_{f}}{V_{i}}\right) .
$$

Therefore, the heat absorbed, Q, in isothermal expansion of n moles of an ideal gas will be
$Q=n R T \ln \left(\frac{V_{f}}{V_{i}}\right)$.
The change in entropy of n moles of an in isothermal expansion will therefore be

$$
S_{f}-S_{i}=\frac{Q}{T}=n R \ln \left(\frac{V_{f}}{V_{i}}\right)
$$

Data of the problem are
$V_{f}=3.4 \mathrm{~L}$,
$V_{i}=1.3 \mathrm{~L}$,
and
$\Delta S=24 \mathrm{~J} \mathrm{~K}^{-1}$.
We have
$n \times 8.31 \ln \left(\frac{3.4}{1.3}\right) \mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}=2.4 \mathrm{~J} \mathrm{~K}^{-1}$
or
$n=\frac{24}{8.31 \times 0.961} \mathrm{~mol} .=3.0 \mathrm{~mol}$.

