257.

Problem 26.33 (RHK)

At very low temperatures, the molar specific heat of many solids is (approximately) proportional to T^{3}; that is $C_{V}=A T^{3}$, where A depends on the particular substance. For aluminium, $A=3.15 \times 10^{-5} \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-4}$. We have to find the entropy change of 4.8 mol of aluminium when its temperature is raised from 5.0 to 10 K.

Solution:

Let us assume that change of temperature of the sample of aluminium from 5.0 to 10 K is by a quasi-static process. In this situation the entropy change can be calculated from the specific heat at constant volume, which varies with temperature as
$C_{V}=A T^{3}$. The amount of heat absorbed by the aluminium sample will be

$$
d Q(T)=n \times C_{V}(T) \times d T,
$$

where n is the amount of the substance in moles. The change in entropy when the temperature of the sample is raised from T_{i} to T_{f} will be given by the integral
$\Delta S=\int_{T_{i}}^{T_{f}} \frac{d Q}{T}=n A \int_{T_{i}}^{T_{f}} \frac{T^{3} d T}{T}=\frac{n A\left(T_{f}^{3}-T_{i}^{3}\right)}{3}$.
Data of the problem are
$T_{i}=5.0 \mathrm{~K}$,
$T_{f}=10.0 \mathrm{~K}$,
and
$A=3.15 \times 10^{-5} \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-4}$.
Therefore, the change in entropy of the sample of aluminium when heated from 5.0 K to 10.0 K will be $\Delta S=4.8 \times 3.15 \times 10^{-5} \times \frac{\left(10^{3}-5^{3}\right)}{3} \mathrm{~J} \mathrm{~K}^{-1}=0.044 \mathrm{~J} \mathrm{~K}^{-1}$.

