Problem 26.23 (RHK)

A Carnot engine works between temperatures T_1 and T_2 . It drives a Carnot refrigerator that works between two different temperatures T_3 and T_4 . We have to find the ratio $|Q_3|/|Q_1|$ in terms of the four temperatures.

Solution:

Let W be the amount of wok which becomes available per cycle of the Carnot engine operating between temperatures T_1 and T_2 . Let $|Q_1|$ be the amount of heat absorbed by the engine from the heat reservoir at temperature T_1 . From the second law of thermodynamics, we have

$$\frac{W}{|Q_1|} = \frac{T_1 - T_2}{T_1},$$

and therefore the amount of work output of the engine that can be used for running the refrigerator will be

$$W = \left| Q_1 \right| \times \frac{T_1 - T_2}{T_1}.$$

From the second law of thermodynamics we get for the amount of heat extracted by the Carnot refrigerator from the heat reservoir at temperature T_4 and the heat discharged to the surroundings at temperature T_3 will be

$$\frac{|Q_4|}{|Q_3|} = \frac{T_4}{T_3},$$

and

$$\frac{|Q_3| - |Q_4|}{|Q_3|} = \frac{T_3 - T_4}{T_3}.$$

But

 $|Q_3| - |Q_4| = W$, the work delivered by the Carnot engine

to the Carnot refrigerator per cycle.

Therefore,

$$\frac{W}{|Q_3|} = \frac{T_3 - T_4}{T_3}$$

And we get

$$\frac{|Q_1|}{|Q_3|} \times \frac{T_1 - T_2}{T_1} = \frac{T_3 - T_4}{T_3}.$$

By rearranging the above expression, we get

$$\frac{|Q_3|}{|Q_1|} = \frac{(1-T_2/T_1)}{(1-T_4/T_3)}.$$

