251.

Problem 26.15 (RHK)

An air conditioner takes air from a room at $70^{\circ} \mathrm{F}$ and transfers to the outdoors, which is at $95^{\circ} \mathrm{F}$. We have to find out the amount in joules of heat transferred from the room for each of electrical energy required to run the refrigerator.

Solution:

From the data of the problem we note that
$T_{L}=70.0^{0} \mathrm{~F}=(70-32) \times \frac{5}{9}{ }^{0} \mathrm{C}=21.1^{\circ} \mathrm{C}=294.1 \mathrm{~K}$.
$T_{H}=95.0^{0} \mathrm{~F}=(95-32) \times \frac{5}{9}^{0} \mathrm{C}=35^{\circ} \mathrm{C}=308 \mathrm{~K}$.
We assume that the air conditioner is operating with maximum efficiency, which is the efficiency of a Carnot engine. For a Carnot refrigerator the work W done on the engine in each cycle and the heat absorbed at the lower temperature Q_{L} are related to the low and high temperatures as

$$
\frac{W}{Q_{L}}=\frac{T_{H}-T_{L}}{T_{L}} .
$$

Therefore,
$Q_{L}=\frac{W \times T_{L}}{T_{H}-T_{L}}$.
We want find the heat absorbed from the room for each joule of electrical energy used by the refrigerator. We should calculate Q_{L} for $W=1.0 \mathrm{~J}$. We find

$$
Q_{L}=\frac{1.0 \times 294.1}{308.0-294.1} \mathrm{~J}=21.15 \mathrm{~J} .
$$

