245.

Problem 25.54 (RHK)

Two identical rectangular rods of metal are welded end to end as shown in Fig. a, and 10 J of heat flows through the rod in 2.0 min . We have to calculate the time for 30 J to flow through the rods if they are welded as shown in the Fig. b.

Fig b

Solution:

Let L be the length of each metal rod and A their crosssectional area. Let k be the thermal conductivity of the metal of the rods. In the configuration shown in Fig.a 10 J of energy flows in 2.0 min . Temperature difference across the ends of the rods is 100 K .

From the equation of heat conduction we have $H_{1}=\frac{k A \times 100}{2 L}=\frac{10}{120} \mathrm{~J} \mathrm{~s}^{-1}$.

When the two rods are arranged in the configuration as shown in Fig b, the cross-sectional area is $2 A$ and length is L. The rate of heat flow will be
$H_{2}=\frac{2 A k \times 100}{L} \mathrm{~J} \mathrm{~s}^{-1}=\frac{2 \times 20}{120} \mathrm{~J} \mathrm{~s}^{-1}=20 \mathrm{~J}$ per minute.
Therefore, time in which 30 J will flow though the rods will be 1.5 minute

