243.

Problem 25.59 (RHK)

Ice has formed on a shallow pond and a steady state has been reached with the air above the ice at $-5.20^{\circ} \mathrm{C}$ and the bottom of the pond at $3.98^{\circ} \mathrm{C}$. The total depth of ice +water is 1.42 m . We have to find how thick the ice is. We may assume that the thermal conductivities of ice and water are 1.67 and $0.502 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$.

Solution:

Let the thickness of ice be $h \mathrm{~m}$. The total depth of ice + water is 1.42 m . Therefore, the water depth below the ice surface to the bottom of the tank will be $(1.42 \mathrm{~m}-h)$.

Temperature of water in contact with the ice slab will be $0^{0} \mathrm{C}$. Temperature of air above the ice surface is $-5.20^{\circ} \mathrm{C}$. Therefore the temperature difference across the ice-surface is $\Delta T_{i c e}=5.2 \mathrm{~K}$.

Temperature at the bottom of the pond is $3.98^{\circ} \mathrm{C}$.
Therefore, the temperature difference between that of the
bottom of the pond and the bottom layer of the ice surface will be $\Delta T_{\text {water }}=3.98 \mathrm{~K}$.

Thermal conductivity of water is
$k_{\text {water }}=0.502 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$.
The thermal conductivity of ice is
$k_{\text {ice }}=1.67 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$.
In the condition of steady state the rate of loss of heat from the bottom of the pond per meter ${ }^{2}$ will be equal to the rate of heat flow per meter ${ }^{2}$ through the ice to the air above the ice surface. That is $k_{\text {water }} \times \frac{\Delta T_{\text {water }}}{1.42 \mathrm{~m}-h}=k_{\text {ice }} \times \frac{\Delta T_{\text {ice }}}{h}$,
or
$0.502 \times \frac{3.98}{1.42 \mathrm{~m}-h}=1.67 \times \frac{5.2}{h}$,
or
$1.998 h=12.33 m-8.684 h$,
or
$h=1.15 \mathrm{~m}$.

