240. 

## Problem 25.61 (RHK)

Assuming $k$ is constant, we have to show that the radial rate of flow of heat in a substance between two concentric spheres is given by

$$
H=\frac{\left(T_{1}-T_{2}\right) 4 \pi k r_{1} r_{2}}{r_{2}-r_{1}}
$$

where the inner sphere has a radius $r_{1}$ and temperature $T_{1}$, and the outer surface has a radius $r_{2}$ and temperature $T_{2}$.


## Solution:

The surface of the inner sphere of radius $r_{1}$ is maintained at temperature $T_{1}$. The surface of the outer sphere of
radius $r_{2}$ is maintained at temperature $T_{2}$. When thermal equilibrium is established let us assume that radial temperature gradient is described by the function $\frac{d T(r)}{d r}$.

Let us consider a concentric spherical surface of radius $r$ from the centre of the spheres. The rate of heat flow across this surface will be given by the equation $H=-k \times\left(4 \pi r^{2}\right) \times \frac{d T}{d r}$,
or

$$
\frac{H d r}{4 \pi k r^{2}}=-d T
$$

Integrating this equation between the limits $r_{1}, T_{1}$, and $r_{2}, T_{2}$, we get
$\int_{r_{1}}^{r_{2}} \frac{H d r}{4 \pi k r^{2}}=-T_{2}+T_{1}$,
or

$$
\left.\frac{H}{4 \pi k} \times\left(-\frac{1}{r}\right)\right]_{r_{1}}^{r_{2}}=T_{1}-T_{2}
$$

Or

$$
\frac{H}{4 \pi k}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)=T_{1}-T_{2}
$$

or
$H=\frac{4 \pi k r_{1} r_{2}\left(T_{1}-T_{2}\right)}{\left(r_{2}-r_{1}\right)}$.


