238.

Problem 25.53 (RHK)

A long tungsten heater wire is rated at $3.08 \mathrm{~kW} \mathrm{~m}^{-1}$ and is 0.520 mm in diameter. It is embedded across the axis of a ceramic cylinder of diameter 12.4 cm . When operated at the rated power, the wire is at $1480^{\circ} \mathrm{C}$, the outside of the cylinder is at $22.0^{\circ} \mathrm{C}$. We have to calculate the thermal conductivity of the ceramic.

Solution:

We will workout the heat flow in the radial direction across the surface of a ceramic cylinder of length, $L=1.0 \mathrm{~m}$, and of diameter $d_{2}=0.124 \mathrm{~m}$. It is given that the diameter of the tungsten wire fixed lengthwise at the axis of the ceramic cylinder is $d_{1}=0.520 \times 10^{-3} \mathrm{~m}$.

The tungsten wire is being heated at its rated power, $H=3.08 \times 10^{3} \mathrm{~W}$.

Temperature of the wire is $T_{1}=1480^{\circ} \mathrm{C}$.
Temperature of the surface of the ceramic cylinder is $T_{2}=22^{\circ} \mathrm{C}$.

At thermal equilibrium a radial temperature gradient will be established. Let us call it $\frac{d T(r)}{d r}$.

At thermal equilibrium the rate of flow of heat across a cylindrical surface of length 1 m at radial distance r from the axis will be $H=3.08 \times 10^{3} \mathrm{~W}$. The area of the cylindrical surface of length 1 m across which the heat is flowing outward in the radial direction is $2 \pi r \mathrm{~m}^{2}$. Let the thermal conductivity of the ceramic be k. According to the law of thermal conduction

$$
H=-k \times(2 \pi r) \frac{d T}{d r},
$$

or

$$
\frac{H}{2 \pi k} \times \frac{d r}{r}=-d T .
$$

Integrating the above expression, we get

$$
\begin{aligned}
& \frac{H}{2 \pi k} \times \ln \left(\frac{r_{2}}{r_{1}}\right)=-\left(T_{2}-T_{1}\right) . \text { And } \\
& k=\frac{H}{2 \pi\left(T_{1}-T_{2}\right)} \times \ln \left(\frac{r_{2}}{r_{1}}\right) \\
&=\frac{3.08 \times 10^{3}}{2 \pi \times 1458} \ln \left(\frac{12.4}{5.2 \times 10^{-2}}\right) \mathrm{W} \mathrm{~m}^{-1} \mathrm{~K}^{-1} \\
&=1.84 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1} .
\end{aligned}
$$

