235.

Problem 25.43 (RHK)

An engine carries 1.00 mol of an ideal monatomic gas around the cycle shown in the figure. Process $A B$ takes place at constant volume, process $B C$ is adiabatic, and process CA takes place at constant pressure. (a) We have to compute the heat Q, the change in internal energy ΔE_{int}, and the work W for each of the three processes and for the cycle as a whole. (b) If the initial pressure at point A is 1.00 atm , we have to find the pressure and the volume at points B and C. We will use $1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}$ and $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.

Volume

Solution:

Data of the problem are
$T_{A}=300 \mathrm{~K}, T_{B}=455 \mathrm{~K}, T_{C}=600 \mathrm{~K}$, and
$p_{A}=1.013 \times 10^{5} \mathrm{~Pa}$.
Amount of ideal monatomic gas is $n=1.00 \mathrm{~mol}$.
We use the ideal gas equation for determining the values of the thermodynamic state variables at points A, B, and C.
$V_{A}=\frac{n R T_{A}}{p_{A}}=\frac{8.314 \times 300}{1.013 \times 10^{5}} \mathrm{~m}^{3}=2.462 \times 10^{-2} \mathrm{~m}^{3}$.
$V_{B}=2.462 \times 10^{-2} \mathrm{~m}^{3}$.
$p_{B}=\frac{n R T_{B}}{V_{B}}=\frac{8.314 \times 600}{2.462 \times 10^{-2}} \mathrm{~Pa}=2.026 \times 10^{5} \mathrm{~Pa}=2.00 \mathrm{~atm}$.
$V_{C}=\frac{n R T_{C}}{p_{C}}=\frac{8.314 \times 455}{1.013 \times 10^{5}} \mathrm{~m}^{3}=3.734 \times 10^{-2} \mathrm{~m}^{3}$.
And
$p_{C}=1.013 \times 10^{5} \mathrm{~Pa}$.
(a)

Process $A B$

During the process AB the work done on the gas will be zero, as the change occurs at constant volume. Change in
the internal energy of the gas during $A B$ is determined by the change in temperature, that is
$\Delta E_{\text {int }}(A B)=\frac{3}{2} R\left(T_{B}-T_{A}\right)=\frac{3 \times 8.314 \times 300}{2} \mathrm{~J}=3741.3 \mathrm{~J}$.
From the first law we get
$Q(A B)=3741.3 \mathrm{~J}$.

Process $B C$

As the change from B to C is adiabatic, the work done on the gas, $W(B C)$, can be obtained from the relation

$$
W=\frac{p_{f} V_{f}-p_{i} V_{i}}{\gamma-1} .
$$

As the gas is monatomic $\gamma=5 / 3$.
Therefore,

$$
\begin{aligned}
W(B C) & =\frac{p_{C} V_{C}-p_{B} V_{B}}{\frac{5}{3}-1}=\frac{3}{2} \times R\left(T_{C}-T_{B}\right)=\frac{3 \times 8.314 \times(-145)}{2} \mathrm{~J} \\
& =-1808.3 \mathrm{~J} .
\end{aligned}
$$

And as the process is adiabatic
$Q(B C)=0$.

Process $C A$

The process $C A$ takes place at constant pressure. The work done on the gas will be

$$
\begin{aligned}
W(C A) & =-\left(p_{A} V_{A}-p_{C} V_{C}\right)=-R\left(T_{A}-T_{C}\right)=-8.314 \times(-155) \mathrm{J} \\
& =1288.7 \mathrm{~J} .
\end{aligned}
$$

Change in internal energy of the gas will be

$$
\begin{aligned}
\Delta E_{\text {int }}(C A) & =\frac{3}{2} R \times\left(T_{A}-T_{C}\right)=\frac{3 \times 8.314 \times(-155)}{2} \mathrm{~J} \\
& =-1933 \mathrm{~J} .
\end{aligned}
$$

From the first law we calculate the heat absorbed by the gas during this process. We find

$$
\begin{aligned}
Q(C A) & =\Delta E_{\text {int }}(C A)-W(C A)=(-1933-1288.7) \mathrm{J} \\
& =-3221.7 \mathrm{~J} .
\end{aligned}
$$

We now have the data for calculating the work done and the heat absorbed during the cycle as a whole.

$$
\begin{aligned}
W_{\text {cycle }} & =W(A B)+W(B C)+W(C A)=(0-1808.3+1288.7) \mathrm{J} \\
& =-519.6 \mathrm{~J} .
\end{aligned}
$$

Total heat absorbed by the gas during the whole cycle will be

$$
\begin{aligned}
Q_{\text {cycle }} & =Q(A B)+Q(B C)+Q(C A)=(3741.3-3221.7) \mathrm{J} \\
& =519.6 \mathrm{~J} .
\end{aligned}
$$

