234.

Problem 25.41 (RHK)

Let 20.9 J of heat be added to a particular ideal gas. As a result, its volume changes from 63.0 to $113 \mathrm{~cm}^{3}$ while the pressure remains constant at 1.00 atm . (a) We have to calculate the change in the internal energy of the gas. (b) If the quantity of the gas present is $2.00 \times 10^{-3} \mathrm{~mol}$, we have to calculate the molar heat capacity at constant pressure. (c) We have to find the molar heat capacity at constant volume.

Solution:

(a)

The initial volume of the gas is
$V_{i}=63.0 \times 10^{-6} \mathrm{~m}^{3}$.
The final volume of the gas is
$V_{f}=113 \times 10^{-6} \mathrm{~m}^{3}$.
The work done on the gas at constant pressure $p=1.00 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$ will be

$$
\begin{aligned}
W=-p\left(V_{f}-V_{i}\right) & =-1.01 \times 10^{5} \times(113-63) \times 10^{-6} \mathrm{~J} \\
& =-5.05 \mathrm{~J} .
\end{aligned}
$$

As the heat absorbed during the process $Q=20.9 \mathrm{~J}$, the change in the internal energy of the gas can be calculated using the first law of thermodynamics. It will be
$\Delta E_{\text {int }}=Q+W=(20.9-5.05) \mathrm{J}=15.9 \mathrm{~J}$.
(b)

The quantity of the gas is $n=2.00 \times 10^{-3} \mathrm{~mol}$. We can calculate the change in temperature of the gas using the ideal gas equation of state.

$$
\begin{aligned}
T_{f}-T_{i}=\frac{\left(p_{f} V_{f}-p_{i} V_{i}\right)}{n R}=\frac{p\left(V_{f}-V_{i}\right)}{n R} & =\frac{5.05}{2.0 \times 10^{-3} \times 8.3315} \mathrm{~K} \\
& =303.6 \mathrm{~K} .
\end{aligned}
$$

Therefore, the molar heat capacity at constant pressure of this ideal gas will be

$$
\begin{aligned}
C_{p}=\frac{Q}{n\left(T_{f}-T_{i}\right)} & =\frac{20.9}{2.0 \times 10^{-3} \times 303.6} \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =34.4 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} .
\end{aligned}
$$

(c)

Heat capacity at constant volume and the heat capacity at constant pressure are related as

$$
C_{p}-C_{v}=R .
$$

Therefore, the molar heat capacity at constant volume will be

$$
C_{v}=C_{p}-R=26.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} .
$$

