233.

Problem 25.37 (RHK)

A quantity of ideal monatomic gas consists of n moles initially at temperature T_{1}. The pressure and volume are then slowly doubled in such a manner as to trace out a straight line on $p V$ diagram. In terms of n, R, and T_{1}, we have to find (a) W, (b) ΔE_{int}, and (c) Q. (d) If one were to define an equivalent specific heat for the process, we have to calculate its value.

Solution:

As the change of pressure and volume is linear in the $p V$ diagram and the pressure doubles when the volume doubles, the equation of the straight line relating the pressure-volume is

$$
p=\left(\frac{p_{1}}{V_{1}}\right) \times V
$$

Also, the initial temperature of the gas is T_{1} and the quantity of the gas is n moles, we have $p_{1} V_{1}=n R T_{1}$.
(a)

The work done on the gas during the slow change described by the linear relation will be

$$
W=-\int_{V_{1}}^{2 V_{1}} p d V=-\int_{V_{1}}^{2 V_{1}} \frac{p_{1}}{V_{1}} \times V d V=-\frac{3}{2} p_{1} V_{1}=-\frac{3}{2} n R T_{1}
$$

(b)

The final temperature of the gas T_{f} can be obtained from the equation of state.
$n R T_{f}=p_{f} V_{f}=4 p_{1} V_{1}=4 n R T_{1}$,
and
$T_{f}=4 T_{1}$.
The change in the internal energy of a monatomic ideal gas can be obtained from the initial and final temperatures.

$$
\Delta E_{\mathrm{int}}=E_{\mathrm{int} f}-E_{\mathrm{int} i}=\frac{3}{2} n R\left(T_{f}-T_{i}\right)=\frac{3}{2} n R\left(4 T_{1}-T_{1}\right)=4.5 n R T_{1} .
$$

(c)

The heat absorbed Q can be calculated from the first law of thermodynamics,
$\Delta E_{\mathrm{int}}=W+Q$,
and

$$
Q=\Delta E_{\mathrm{int}}-W=\frac{9}{2} n R T_{1}-\left(-\frac{3}{2} n R T_{1}\right)=6 n R T_{1} .
$$

(d)

We define the equivalent specific heat

$$
C=\frac{Q}{n \Delta T}=\frac{6 n R T_{1}}{n \times 3 T_{1}}=2 R .
$$

