## 231.

## Problem 25.31 (RHK)

A sample of n moles of an ideal gas undergoes an isothermal expansion. We have to find the heat flow into the gas in terms of the initial and final volumes and the temperature.

## **Solution:**

Equation of state of an ideal gas is

$$p = \frac{nRT}{V},$$

where n is the amount of gas in moles, T its temperature, and V its volume. Work done on an ideal gas under isothermal expansion will be given by

$$W = -\int_{V_i}^{V_f} p dV = -\int_{V_i}^{V_f} \frac{nRT}{V} dV = -nRT \ln\left(\frac{V_f}{V_i}\right).$$

In an isothermal process there is no change in the internal energy. The first law of thermodynamics is  $\Delta E = Q + W$ . As  $\Delta E = 0$ ,

We have

$$W = -Q = nRT \ln\left(\frac{V_f}{V_i}\right).$$

