230.

Problem 25.25 (RHK)

In an experiment, 1.35 mol of oxygen $\left(\mathrm{O}_{2}\right)$ are heated at constant pressure starting at $11.0^{\circ} \mathrm{C}$. We have to calculate the amount of heat that must be added to the gas to double its volume.

Solution:

Let the initial volume of the gas be $V \mathrm{~m}^{3}$ and its pressure be $p \mathrm{~Pa}$. The initial temperature of the gas is
$T_{i}=(273.16+11.0) \mathrm{K}=284.16 \mathrm{~K}$.
As the amount of oxygen gas is 1.35 mol , using the ideal gas equation of state we find

$$
\begin{aligned}
p V=1.35 \times R \times T_{i} & =1.35 \times 8.315 \times 284.16 \mathrm{~J} \\
& =3,189.7 \mathrm{~J} .
\end{aligned}
$$

As the volume of the gas is doubled at constant pressure, the final temperature of the gas will be $T_{f}=2 \times T_{i}=568.3 \mathrm{~K}$.

For a diatomic gas the internal energy of $n \mathrm{~mol}$ at temperature T is
$E=\frac{5}{2} n R T$,
therefore, the change in the internal energy of the gas on heating will be

$$
\begin{aligned}
\Delta E & =\frac{5}{2} \times 1.35 \times 8.315 \times(568.32-284.16) \mathrm{J} \\
& =7974 \mathrm{~J} .
\end{aligned}
$$

We next calculate the work done on the gas during its expansion of its volume from V to $2 V$. It is given by
$W=-\int_{V}^{2 V} p d V=-p V=-3189.7 \mathrm{~J}$.
The fist law of thermodynamics states that
$\Delta E=Q+W$,
where Q is the heat energy supplied to the system during its change of state.

Therefore,
$Q=\Delta E-W=(7914+3189.7) \mathrm{J}=11,163 \mathrm{~J}$.

