229.

Problem 25.19 (RHK)

A $21.6-\mathrm{g}$ copper ring has a diameter of 2.54000 cm at its temperature of $0^{0} \mathrm{C}$. An aluminium sphere has a diameter of 2.54533 cm at its temperature of $100^{\circ} \mathrm{C}$. The sphere is placed on top of the ring, and the two are allowed to come to thermal equilibrium, no heat being lost to the surroundings. The sphere just passes through the ring at the equilibrium temperature. We have to find the mass of the sphere

Solution:

In solving this problem we will use two concepts: (i) thermal linear expansion, and (ii) conservation of heat energy.

It is given that the temperature of the copper ring is $0^{\circ} \mathrm{C}$ and its diameter at $0^{\circ} \mathrm{C}$ is
$d_{\text {ring }}\left(0^{\circ} \mathrm{C}\right)=2.54000 \mathrm{~cm}$.
It is given that the temperature of the aluminium sphere is $100^{\circ} \mathrm{C}$ and its diameter is
$d_{\text {sphere }}=2.54533 \mathrm{~cm}$.
Let the equilibrium temperature of the ring-sphere system after the two have been in thermal contact be $T^{0} \mathrm{C}$.
The linear thermal expansioncoefficient of copper is $\alpha_{C u}=17 \times 10^{-6}$ per and the linear thermal
aluminium is

$$
\alpha_{A l}=23 \times 10^{-6} \text { per } \mathrm{C}^{0} .
$$

Using the property of linear expansion we first determine the diameter of the ring and that of the aluminium sphere at the equilibrium temperature.

$$
d_{\text {rimg }}\left(T^{0} \mathrm{C}\right)=2.5400\left(1+17 \times 10^{-6} T\right)
$$

and

$$
d_{\text {sphere }}=2.54533\left(1-23 \times 10^{-6} T\right) .
$$

As the sphere just passes through the ring at $T^{0} \mathrm{C}$, we have the condition

$$
d_{\text {ring }}\left(T^{0} \mathrm{C}\right)=d_{\text {sphere }}\left(T^{0} \mathrm{C}\right),
$$

or

$$
2.5400\left(1+17 \times 10^{-6} T\right)=2.54533\left(1-23 \times 10^{-6} T\right) .
$$

It is a linear algebraic equation for T. We find $T=34.1^{\circ} \mathrm{C}$.

For we determining the mass of the aluminium sphere we will use the conservation of heat energy.
The specific heat capacity or copper is $c_{C u}=387 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$, and that of aluminium

$$
c_{A l}=900 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} .
$$

The mass of the copper ring is $21.6 \times 10^{-3} \mathrm{~kg}$.
Let the mass of the aluminium sphere be $m \mathrm{~kg}$.
Change of heat energy of the aluminium sphere will be

$$
\begin{aligned}
\Delta Q_{\text {sphere }} & =900 \times(34.1-100) \times m \mathrm{~J} \\
& =-59,310 \times m \mathrm{~J} .
\end{aligned}
$$

Change of heat energy of the copper ring will be

$$
\begin{aligned}
\Delta Q_{\text {ring }} & =21.6 \times 10^{-3} \times 387 \times 34.1 \mathrm{~J} \\
& =285.05 \mathrm{~J} .
\end{aligned}
$$

From the conservation of energy, we have the condition

$$
\Delta Q_{\text {sphere }}+\Delta Q_{\text {ring }}=0,
$$

Or

$$
m=\frac{285.05}{59,310}=4.81 \times 10^{-3} \mathrm{~kg}=4.81 \mathrm{~g} .
$$

