227.

Problem 25.13 (RHK)

An aluminium electric kettle of mass 0.560 kg contains a $2.40-\mathrm{kW}$ heating element. It is filled with 0.640 L of water at $12.0^{\circ} \mathrm{C}$. We have to calculate (a) the time taken for the water to boil; (b) the time for the kettle to boil dry. (We may assume that the temperature of the kettle does not exceed $100^{\circ} \mathrm{C}$ at any time.)

Solution:

(a)

Mass of 0.640 L of water $=0.640 \mathrm{~kg}$.
Amount of heat required for heating the water from $12.0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ will be
$Q_{w}=0.640 \times 4190 \times(100-12) \mathrm{J}=2.36 \times 10^{5} \mathrm{~J}$.
In calculating the amount of heat required we have used for the thermal capacity of water $c_{w}=4190 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.

Mass of the aluminium kettle is 0.560 kg and the specific heat of aluminium is $c_{a l}=900 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$. Heat required
for the kettle to get warmed from $12.0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ will be

$$
Q_{a l}=0.560 \times 900 \times(100-12) \mathrm{J}=4.44 \times 10^{4} \mathrm{~J}
$$

Total heat required for the water to boil in the kettle will be $Q_{w}+Q_{a l}=28.04 \times 10^{4} \mathrm{~J}$.

Rate at which heat energy is supplied by the heating element is $2.5 \times 10^{3} \mathrm{~J} \mathrm{~s}^{-1}$.

Therefore, the time required for the kettle to boil will be
$t_{\text {boil }}=\frac{28.04 \times 10^{4}}{2.4 \times 10^{3}} \mathrm{~s}=117 \mathrm{~s}$.
(b)

Heat of vaporization of water $L_{\text {vap }}=2256 \times 10^{3} \mathrm{~J}$.
Therefore, amount of heat required for 0.640 kg of water to vaporize at $100^{\circ} \mathrm{C}$ will be

$$
Q_{v a p}=0.640 \times 2256 \times 10^{3} \mathrm{~J}=1.44 \times 10^{6} \mathrm{~J}
$$

Therefore, the additional time taken for vaporization of water at $100^{\circ} \mathrm{C}$ will be
$t_{\text {vap }}=\frac{1.44 \times 10^{6}}{2.4 \times 10^{3}} \mathrm{~s}=600 \mathrm{~s}$.

And the total amount of time taken for vaporization of 0.640 L of water at $12.0^{\circ} \mathrm{C}$ using a $2.40-\mathrm{kW}$ heating element will be
$t=t_{\text {boil }}+t_{\text {vap }}=(117+600) \mathrm{s}=717 \mathrm{~s}$.

