225.

Problem 20.57P (HRW)

Two containers are at the same temperature. The first contains gas with pressure p_{1}, molecular mass m_{1}, and root mean square speed $v_{\text {rmss }}$. The second contains gas with pressure $2 p_{1}$, molecular mass m_{2}, and average speed. We have to find the mass ratio m_{1} / m_{2}.

Solution:

At temperature T, the average speed \bar{v} is given by the relation

$$
\bar{v}=\sqrt{\frac{8 k T}{\pi m}}
$$

where m is molecular mass. And the root-mean-square rms) speed $v_{r m s}$ is given by

$$
v_{r m s}=\sqrt{\frac{3 k T}{m}} .
$$

We have been given that

$$
\bar{v}_{2}=2 v_{r m s 1} .
$$

This implies that

$$
\sqrt{\frac{8 k T}{\pi m_{2}}}=\sqrt{\frac{3 k T}{m_{1}}},
$$

Or

$$
\frac{8 k T}{\pi m_{2}}=\frac{4 \times 3 k T}{m_{1}}
$$

Or

$$
\frac{m_{1}}{m_{2}}=\frac{3 \pi}{2}=4.71
$$

