218.

Problem 23.51 (RHK)

An ideal gas experiences an adiabatic compression from $p=122 \mathrm{kPa}, \quad V=10.7 \mathrm{~m}^{3}, \quad T=-23^{\circ} \mathrm{C} \quad$ to $p=1450 \mathrm{kPa}, V=1.36 \mathrm{~m}^{3}$. We have to calculate (a) the value of γ; (b) the final temperature; (c) quantity of gas present in moles; (d) the total translational kinetic energy per mole before and after the compression; and (e) the ratio of the rms speed before to that after the compression.

Solution:

Data of the problem are

$$
p_{i}=122 \mathrm{kPa} \text {, }
$$

$$
V_{i}=10.7 \mathrm{~m}^{3},
$$

$$
T_{i}=-23^{\circ} \mathrm{C}=250.16 \mathrm{~K},
$$

$$
p_{f}=1450 \mathrm{kPa},
$$

and
$V_{f}=1.36 \mathrm{~m}^{3}$.

(a)

In an adiabatic process pressure and volume vary as per the relation

$$
\begin{aligned}
& p_{i} V_{i}^{\gamma}=p_{f} V_{f}^{\gamma} \\
& \text { or } \\
& \gamma=\frac{\ln \left(p_{f} / p_{i}\right)}{\ln \left(V_{i} / V_{f}\right)}=\frac{\ln (1450 / 122)}{\ln (10.7 / 1.36)}=1.20
\end{aligned}
$$

(b)

In an adiabatic process temperature and volume vary as per the relation
$T_{f} V_{f}^{\gamma-1}=T_{i} V_{i}^{\gamma-1}$,

or
$T_{f}=T_{i} \times\left(\frac{V_{i}}{V_{f}}\right)^{\gamma-1}=250.16 \times\left(\frac{10.7}{1.36}\right)^{0.2}=377.9 \mathrm{~K}=1.05^{0} \mathrm{C}$.
(c)

Amount of gas in moles, μ, can be calculated from the ideal gas equation of state

$$
p V=\mu R T
$$

or

$$
\mu=\frac{p V}{R T}=\frac{122 \times 10^{3} \times 10.7}{8.3145 \times 250.16} \mathrm{~mol}=628 \mathrm{~mol}
$$

(d)

Total internal energy, which for monatomic molecules is equal to the total translational kinetic energy, is given by

$$
U=\frac{3}{2} \mu R T
$$

Therefore, the initial total kinetic energy of the molecules of the gas is

$$
K_{i}=\frac{3}{2} \times 628 \times 8.3145 \times 250.16 \mathrm{~J}=1.96 \times 10^{6} \mathrm{~J}
$$

The final total kinetic energy of the molecules of the gas will be

$$
K_{f}=\frac{3}{2} \times 628 \times 8.3145 \times 378 \mathrm{~J}=2.96 \times 10^{6} \mathrm{~J}
$$

(e)

Ratio of the rms initial and final speeds of the molecules can be calculated from the average kinetic energy of molecules at temperature T, which is given by the relation

$$
\frac{1}{2} m v^{2}=\frac{3}{2} k T
$$

where m is the mass of molecules of the gas. We therefore have

$$
\frac{v_{i}^{2}}{v_{f}^{2}}=\frac{T_{i}}{T_{f}}
$$

or

$$
\frac{v_{i}}{v_{f}}=\left(\frac{T_{i}}{T_{f}}\right)^{1 / 2}=\left(\frac{250.16}{378}\right)^{1 / 2}=0.813
$$

