214.

Problem 23.43 (RHK)

Gas occupies a volume of 4.33 L at a pressure of 1.17 atm and a temperature of 310 K . It is compressed adiabatically to a volume of 1.06 L . We have to determine (a) the final pressure and (b) the final temperature, assuming the gas to be an ideal gas with $\gamma=1.40$. (c) We have to calculate the work done on the gas.

Solution:

Data of the problem are
$V_{i}=4.33 \mathrm{~L}=4.33 \times 10^{-3} \mathrm{~m}^{3}$,
$P_{i}=1.17 \times 1.01 \times 10^{5} \mathrm{~Pa}=1.18 \times 10^{5} \mathrm{~Pa}$,
$T_{i}=310 \mathrm{~K}$,
$V_{f}=1.06 \times 10^{-3} \mathrm{~m}^{3}$,
and
$\gamma=1.40$.
(a)

As the gas has been compressed adiabatically, we have

$$
P_{f} V_{f}^{\gamma}=P_{i} V_{i}^{\gamma} .
$$

Therefore,

$$
P_{f}=1.18 \times 10^{5}\left(\frac{4.33}{1.06}\right)^{1.4} \quad \mathrm{~Pa}=8.475 \times 10^{5} \mathrm{~Pa}=8.39 \mathrm{~atm}
$$

(b)

Using the ideal gas equation, we calculate the molar amount of gas.

$$
\mu=\frac{P_{i} V_{i}}{R T_{i}}=\frac{1.18 \times 10^{5} \times 4.33 \times 10^{-3}}{8.3145 \times 310} \mathrm{~mol}=0.1985 \mathrm{~mol} .
$$

Temperature of the compressed gas can be obtained from the ideal gas equation

$$
T_{f}=\frac{P_{f} V_{f}}{\mu R}=\frac{8.475 \times 10^{5} \times 1.06 \times 10^{-3}}{0.1985 \times 8.3145} \mathrm{~K}=544 \mathrm{~K} .
$$

(c)

Work done on a gas is given by

$$
W=-\int P d V .
$$

For an adiabatic process

$$
P=\frac{P_{i} V_{i}^{\gamma}}{V^{\gamma}} .
$$

Therefore,

$$
\begin{aligned}
& W_{\text {adiabatic }}=-\int \frac{P_{i} V_{i}^{\gamma}}{V^{\gamma}} d V=\frac{1}{(\gamma-1)}\left(P_{f} V_{f}-P_{i} V_{i}\right) \\
& =\frac{1}{(1.4-1)}\left(8.475 \times 10^{5} \times 1.06 \times 10^{-3}-1.182 \times 10^{5} \times 4.33 \times 10^{-3}\right) \mathrm{J} \\
& =966 \mathrm{~J} .
\end{aligned}
$$

