211.

Problem 23.27 (RHK)

Oxygen $\left(\mathrm{O}_{2}\right)$, gas at $15^{\circ} \mathrm{C}$ and 1.0 atm pressure is confined to a cubical box 25 cm on a side. We have to calculate the change in gravitational potential energy of a mole of oxygen molecules in falling the height of the box to the total kinetic energy of the molecules.

Solution:

The kinetic energy of one mole of molecules at temperature T K is

$$
E_{i}=\frac{3}{2} N_{A} k T,
$$

where $N_{A}=6.02 \times 10^{23}$ is the Avogadro number and $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ is the Boltzmann constant.

Temperature of $15^{\circ} \mathrm{C}$ is 288.16 K . Therefore,

$$
\begin{aligned}
E_{i} & =\frac{3}{2} \times 6.02 \times 10^{23} \times 1.38 \times 10^{-23} \times 288.16 \mathrm{~J} \\
& =3590.8 \mathrm{~J} .
\end{aligned}
$$

Molecular weight of O_{2} is $32 \times 10^{-3} \mathrm{~kg}$, therefore the change in gravitational potential energy of one mole of
oxygen molecules when they drop in height by 25 cm will be

$$
E_{p}=32 \times 10^{-3} \times 25 \times 10^{-2} \times 9.8 \mathrm{~J}=7.84 \times 10^{-2} \mathrm{~J}
$$

Ratio of change in gravitational potential energy of one mole of oxygen molecule in a vertical distance of 25 cm to the thermal energy at $15^{0} \mathrm{C}$ will be

$$
\frac{E_{p}}{E_{i}}=\frac{7.84 \times 10^{-2}}{3590.8}=2.2 \times 10^{-5}
$$

