210.

Problem 23.35 (RHK)

The envelope and basket of a hot-air balloon have a combined mass of 249 kg , and the envelop has a capacity of $2180 \mathrm{~m}^{3}$. When envelope is fully inflated with the hot air it provides a lifting capacity of 272 kg (in addition to its own mass). Assuming that the surrounding air, at $18.0^{\circ} \mathrm{C}$, has a density of $1.22 \mathrm{~kg} \mathrm{~m}^{-3}$, we have to find the temperature of hot air that provides the required lift.

Solution:

Data of the problem are:
volume of the hot air balloon $=2180 \mathrm{~m}^{3}$,
combined mass of basket and envelope $=249 \mathrm{~kg}$,
total lift to achieved $=(249+272) \mathrm{kg}=521 \mathrm{~kg}$, and density of the surrounding air $=1.22 \mathrm{~kg} \mathrm{~m}^{-3}$.

Let the density of hot air inside the balloon that provides the required lift be $\rho \mathrm{kg} \mathrm{m}^{-3}$.

From the buoyancy principle, we have
$2180 \times(1.22-\rho) g=521 g$,
or
$\rho=0.981 \mathrm{~kg} \mathrm{~m}^{-3}$.
Assuming ideal gas equation, relation between pressure, p, density, ρ, and temperature, T, is

$$
p=\frac{\rho R T}{M}
$$

where M is the molar mass. It is given that the temperature of the surrounding air is $18.0^{\circ} \mathrm{C}$ and its density is $1.22 \mathrm{~kg} \mathrm{~m}^{-3}$. As the pressure of the surrounding air outside the balloon and that of hot air inside the balloon are the same, we have the condition $0.981 \mathrm{~kg} \mathrm{~m}^{-3} \times T=1.22 \times 291.16 \mathrm{~kg} \mathrm{~m}^{-3} \mathrm{~K}$. or

$$
T=362.09 \mathrm{~K}=(362.09-273.16){ }^{\circ} \mathrm{C}=89^{\circ} \mathrm{C} .
$$

