209.

Problem 23.16 (RHK)

A mercury-filled manometer with two unequallength arms of the same cross-sectional area is sealed off with the same pressure p_{0} in the two arms. With the temperature constant, an additional $10.0 \mathrm{~cm}^{3}$ of mercury is admitted through the stopcock at the bottom. The level on the left increases 6.0 cm and that on the right increases 4.0 cm . We have to find the pressure p_{0}.

Solution:

Let the cross-sectional area of the arms of the manometer be $a \mathrm{~cm}^{2}$. The initial volume of the gas in the left-arm of the manometer will be
$V_{l}=50 a \mathrm{~cm}^{3}$,
and the initial volume of the right-arm of the manometer will be

$$
V_{r}=30 a \mathrm{~cm}^{3} .
$$

It is given that the pressure of gas in both arms of the manometer is p_{0}.

When at constant initial temperature an additional
$10.0 \mathrm{~cm}^{3}$ of mercury is introduced in the manometer it is given that the level of mercury in the left-arm rises by 6.0 cm and that in the right-arm by 4.0 cm . The changed volume of the gas in the left-arm after mercury has been added will be $V_{l}^{\prime}=44 a \mathrm{~cm}^{3}$,
and the changed volume of the gas in the right-arm will be
$V_{r}^{\prime}=26 a \mathrm{~cm}^{3}$.
Let the changed pressure in the left-arm be p_{l}^{\prime} and that in the right-arm be p_{r}^{\prime}. As the temperature has remained constant in the process, we have $44 p_{l}^{\prime}=50 p_{0}$,
or

$$
p_{l}^{\prime}=\frac{50}{44} p_{0} .
$$

Similarly, we have
$26 p_{r}^{\prime}=30 p_{0}$,
or
$p_{r}^{\prime}=\frac{30}{26} p_{0}$.
We now require that at the same level of mercury in both the arms of the manometer the pressure has to be equal.

This gives the condition

$$
p_{l}^{\prime}+\rho g \times 6 \times 10^{-2}=p_{r}^{\prime}+\rho g \times 4 \times 10^{-2}
$$

or

$$
\left(p_{r}^{\prime}-p_{l}^{\prime}\right)=\rho g \times 2 \times 10^{-2},
$$

Or
$p_{0}\left(\frac{30}{26}-\frac{50}{44}\right)=13.6 \times 10^{3} \times 9.8 \times 2 \times 10^{-2} \mathrm{~Pa}$,
Or

$$
p_{0}=1.52 \times 10^{5} \mathrm{~Pa}=1.5 \mathrm{~atm} .
$$

