208.

Problem 23. 21 (RHK)

At $44.0^{0} \mathrm{C}$ and 1.23×10^{-2} atm the density of a gas is $1.32 \times 10^{-5} \mathrm{~g} \mathrm{~cm}^{-3}$. (a) We have to find $v_{r m s}$ for the gas molecules. (b) We have to find the molar mass of the gas and identify it.

Solution:

For a gas at temperature T the average energy of the molecules is

$$
m v_{r m s}^{2} / 2=3 k T / 2,
$$

or
$v_{r m s}^{2}=3 k T / m$,
where k is the Boltzmann constant and m is the mass of a molecule. Ideal gas equation is
$P V=N k T$,
where N is the total number of molecules occupying the volume V at pressure P and at temperature T. Therefore, $v_{r m s}^{2}=\frac{3 P V}{M N}=\frac{3 P}{\rho}$,
where M is the mass of the gas and ρ is its density.

The pressure of the gas is $P=1.23 \times 10^{-2} \mathrm{~atm}$, its density is $\rho=1.32 \times 10^{-5} \mathrm{~g} \mathrm{~cm}^{-3}$. Therefore,

$$
\begin{aligned}
v_{r m s}=\sqrt{\frac{3 P}{\rho}} & =\sqrt{\frac{3 \times 1.23 \times 10^{-2} \times 1.01 \times 10^{5}}{1.32 \times 10^{-5} \times 10^{3}}} \mathrm{~m} \mathrm{~s}^{-1} \\
& =5.31 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1} .
\end{aligned}
$$

One mole of gas has N_{A} molecules. The total kinetic energy of one mole of gas will therefore be

$$
m N_{A} v_{r m s}^{2} / 2=3 k N_{A} T / 2=3 R T / 2,
$$

and

$$
m N_{A}=\frac{3 R T}{v_{r m s}^{2}}
$$

Mass of one mole of the gas will therefore be $m N_{A}=\frac{3 R T}{v_{r m s}^{2}}=\frac{3 \times 8.3145 \times(273.16+44)}{\left(5.31 \times 10^{2}\right)^{2}} \mathrm{~kg}=28.0 \mathrm{~g}$.

Therefore, the gas is nitrogen $\left(N_{2}\right)$.

