207.

Problem 23.19 (RHK)

At $0^{\circ} \mathrm{C}$ and 1.00 atm pressure the densities of air, oxygen, and nitrogen are, respectively, $1.29 \mathrm{~kg} \mathrm{~m}^{-3}, 1.429 \mathrm{~kg} \mathrm{~m}^{-3}$, and $1.250 \mathrm{~kg} \mathrm{~m}^{-3}$. We have to calculate the fraction by mass of nitrogen in the air from these data, assuming only these two gases to be present.

Solution:

In the ideal gas approximation an the same temperature and pressure all the three gaseany substances air, oxygen and nitrogen will have the same number of molecules. Let this number be N . Let $m_{O_{2}}$ be the mass of an oxygen molecule and $m_{N_{2}}$ be the mass of a nitrogen molecule. Let V be the volume of the three gaseous substances at $0^{\circ} \mathrm{C}$ and at 1.00 atm pressure containing N molecules. The densities of the oxygen gas and nitrogen gas at $0^{\circ} \mathrm{C}$ and at 1.00 atm pressure are $1.429 \mathrm{~kg} \mathrm{~m}^{-3}$, and $1.250 \mathrm{~kg} \mathrm{~m}^{-3}$, respectively. Therefore,
$\frac{m_{O_{2}} N}{V}=1.429 \mathrm{~kg} \mathrm{~m}^{-3}$,
and
$\frac{m_{N_{2}} N}{V}=1.250 \mathrm{~kg} \mathrm{~m}^{-3}$.
Let the number of oxygen and nitrogen molecules in air be $N_{O_{2}}$, and $N_{N_{2}}$, respectively. As the density of air is
$1.29 \mathrm{~kg} \mathrm{~m}^{-3}$, we have
$\frac{m_{O_{2}} N_{O_{2}}+m_{N_{2}} N_{N_{2}}}{V}=1.293 \mathrm{~kg} \mathrm{~m}^{-3}$.
Substituting
$N_{O_{2}}=N-N_{N_{2}}$,
we find

$$
\frac{N_{N_{2}}}{N}=0.7597
$$

And

$$
\begin{aligned}
\frac{m_{N_{2}} N_{N_{2}}}{\left(m_{N_{2}} N_{N_{2}}+m_{O_{2}} N_{O_{2}}\right)}=\frac{\frac{N_{N_{2}}}{N} \times \frac{m_{N_{2}} N}{V}}{1.293} & =\frac{0.7597 \times 1.250}{1.293} \\
& =0.73
\end{aligned}
$$

Therefore, fraction by mass of nitrogen in air is 0.73 .

