206.

Problem 23.13 (RHK)

Container A contains an ideal gas at a pressure of $5.0 \times 10^{5} \mathrm{~Pa}$ and a temperature of 300 K . It is connected by a thin tube to container B with four times the volume of A. B contains the same ideal gas at a pressure of $1.0 \times 10^{5} \mathrm{~Pa}$ and at a temperature of 400 K . The connecting valve is opened, and equilibrium is achieved at a common pressure while the temperature of each container is kept constant at its initial value. We have to find the final pressure in the system.

Solution:

Let the initial amounts of ideal gas in the container A be $n_{1} \mathrm{~mol}$ and that in the container B be $n_{2} \mathrm{~mol}$, respectively. Let the volume of the container A be V.

Temperature of the gas in A is 300 K and the pressure of the gas in A when it is isolated from B is given to be $5.0 \times 10^{5} \mathrm{~Pa}$. The volume of the container B is $4 V$ and its temperature is 400 K and the pressure of the gas in it when it is isolated from A is given to be $1.0 \times 10^{5} \mathrm{~Pa}$.

From the ideal gas equation, we have
$n_{1}=\frac{P_{A} V_{A}}{R T_{A}}=\frac{5.0 \times 10^{5} \times V}{300 R}=\frac{5 \times 10^{3} \mathrm{~V}}{3 R}$,
$n_{2}=\frac{P_{B} V_{B}}{R T_{B}}=\frac{1.0 \times 10^{5} \times 4 \mathrm{~V}}{400 R}=\frac{10^{3} \mathrm{~V}}{R}$.
The total amount of gas in containers A and B is therefore
$n=n_{1}+n_{2}=\frac{8 \times 10^{3} \mathrm{~V}}{3 R}$.
The connecting valve is opened and equilibrium is achieved by marinating the temperatures of A and B. Let the common pressure in the containers be P when equilibrium has been reached. Let the amount of gas in the container A at equilibrium be n_{A}. The amount of gas in the container B at equilibrium will be $n-n_{A}$. We have the following equations describing this situation:
$P V=n_{A} R \times 300$,
$P \times 4 V=\left(n-n_{A}\right) R \times 400$,
or
$n-n_{A}=3 n_{A}$,
or
$n_{A}=\frac{n}{4}=\frac{2 V \times 10^{3}}{3 R}$.
Therefore,
$P=200 \mathrm{kPa}$.

