205.

Problem 23.11 (RHK)

An air bubble of $19.4 \mathrm{~cm}^{3}$ volume is at the bottom of a lake 41.5 m deep where the temperature is $3.8^{0} \mathrm{C}$. The bubble rises to the surface, which is at a temperature of $22.6^{\circ} \mathrm{C}$. We can take the temperature of the bubble to be the same as that of the surrounding water. We have to find its volume just before it reaches the surface.

Solution:

We shall first calculate the amount of air in the bubble. Let it be n mol. Pressure of air at a depth of 41.5 m will be

$$
\begin{aligned}
P & =P_{a t m}+\rho g h \\
& =\left(1.01 \times 10^{5}+41.5 \times 9.8 \times 10^{3}\right) \mathrm{Pa} \\
& =5.07 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

It is given that the volume of the air bubble at the bottom of the lake that is at a depth of 41.5 m is

$$
V=19.4 \times 10^{-6} \mathrm{~m}^{3} .
$$

Temperature of the lake at that depth is $3.8^{\circ} \mathrm{C}$. Therefore the initial temperature of the bubble is

$$
T=276.96 \mathrm{~K}
$$

Assuming the ideal gas equation for the air in the bubble, we can find the amount of gas in the bubble,

$$
n=\frac{P V}{R T}=\frac{5.07 \times 10^{5} \times 19.4 \times 10^{-6}}{8.3145 \times 276.96} \mathrm{~mol}=4.27 \times 10^{-3} \mathrm{~mol}
$$

Therefore, the volume of this air bubble, V^{\prime}, just before it reaches the surface of the lake, where the temperature is $22.6^{0} \mathrm{C}\left(T^{\prime}=295.76 \mathrm{~K}\right)$, will be

$$
\begin{aligned}
V^{\prime}=\frac{n R T^{\prime}}{P_{\text {atm }}} & =\frac{4.27 \times 10^{-3} \times 8.3145 \times 295.76}{1.01 \times 10^{5}} \mathrm{~m}^{3} \\
& =103.96 \times 10^{-6} \mathrm{~m}^{3}=104 \mathrm{~cm}^{3}
\end{aligned}
$$

