202.

Problem 22.35 (RHK)

At $100^{\circ} \mathrm{C}$ a glass flask is filled by 891 g of mercury. We have to calculate the mass of mercury that is needed to fill the flask at $-35^{\circ} \mathrm{C}$.

The coefficient of linear expansion of glass $\alpha_{\text {glass }}=9.0 \times 10^{-6} / \mathrm{C}^{0}$; and the coefficient of volume expansion of mercury is $\beta_{\text {mercury }}=1.8 \times 10^{-4} / \mathrm{C}^{0}$ and density of mercury at $20^{\circ} \mathrm{C}$, $\rho_{\text {mercury }}\left(20^{0} \mathrm{C}\right)=13.55 \mathrm{~g} / \mathrm{cm}^{3}$

Solution:

We will first calculate the density of mercury at $100^{\circ} \mathrm{C}$. Change in density with temperature is determined by the coefficient of volume expansion.

$$
\rho^{\prime}=\rho+\Delta \rho=\frac{M}{V+\beta V \Delta T}=\rho(1+\beta \Delta T)^{-1} ; \rho-\beta \rho \Delta T,
$$

Or
$\Delta \rho=-\beta \rho \Delta T$.

Therefore,

$$
\begin{aligned}
\rho_{\text {mercury }}\left(100^{0} \mathrm{C}\right) & =\frac{13.55}{1+1.8 \times 10^{-4} \times 80} \mathrm{~g} \mathrm{~cm}^{-3} \\
& =\frac{13.55}{1.0144} \mathrm{~g} \mathrm{~cm}^{-3}=13.357 \mathrm{~g} \mathrm{~cm}^{-3}
\end{aligned}
$$

Volume of 891 g of mercury at $100^{\circ} \mathrm{C}$ will be

$$
V_{\text {mercury }}=\frac{891}{13.357} \mathrm{~cm}^{3}=66.703 \mathrm{~cm}^{3} .
$$

Change in the volume of mercury when its temperature changes from $100^{\circ} \mathrm{C}$ to $-35^{\circ} \mathrm{C}$ will be $\Delta V_{\text {mercury }}=-135 \times 1.8 \times 10^{-4} \times 66.703 \mathrm{~cm}^{3}=-1.6208 \mathrm{~cm}^{3}$. We will next calculate the change in the volume of the glass flask when its temperature changes from $100^{\circ} \mathrm{C}$ to $-35^{\circ} \mathrm{C}$. It is related to the coefficient of linear expansion $\alpha_{\text {glass }}$.

$$
\begin{aligned}
\Delta V_{\text {flask }}=3 \times \alpha_{\text {glass }} V_{\text {flask }} \times \Delta T & =-3 \times 9.0 \times 10^{-6} \times 66.703 \times 135 \mathrm{~cm}^{3} \\
& =-0.243132 \mathrm{~cm}^{3} .
\end{aligned}
$$

Therefore,
$V_{\text {flask }}\left(-35^{\circ} \mathrm{C}\right)=(66.703-0.243132) \mathrm{cm}^{3}=66.4598 \mathrm{~cm}^{3}$.
The volume of the empty flask at $-35^{\circ} \mathrm{C}$ will therefore be

$$
\begin{aligned}
V_{\text {flask }}\left(-35^{0} \mathrm{C}\right)-V_{\text {mercury }}\left(-35^{\circ} \mathrm{C}\right) & =(66.4598-65.0822) \mathrm{cm}^{3} \\
& =1.3776 \mathrm{~cm}^{3} .
\end{aligned}
$$

We will next calculate the density of mercury at $-35^{\circ} \mathrm{C}$. It will be

$$
\begin{aligned}
\rho_{\text {mercury }}\left(-35^{0} \mathrm{C}\right)=\frac{\rho_{\text {mercury }}\left(20^{0} \mathrm{C}\right)}{1-1.8 \times 10^{-4} \times 55} & =\frac{13.55}{0.9901} \mathrm{~g} \mathrm{~cm}^{-3} \\
& =13.685 \mathrm{~g} \mathrm{~cm}^{-3}
\end{aligned}
$$

Additional amount of mercury needed to fill the flask at $-35^{0} \mathrm{C}$ will be $1.3776 \times 13.685 \mathrm{~g}=18.85 \mathrm{~g}$.

Therefore, the total amount of mercury in the flask at $-35^{\circ} \mathrm{C}$ is
$(891+18.85) \mathrm{g}=909.8 \mathrm{~g}$.

