201.

Problem 22.41 (RHK)

A pendulum clock with a pendulum made of brass is designed to keep accurate time at $20^{\circ} \mathrm{C}$. We have to estimate the error in seconds per hour when the clock operates at $0^{\circ} \mathrm{C}$.

$$
\alpha_{\text {brass }}=19 \times 10^{-6} / \mathrm{C}^{0} .
$$

Solution:

We will first find the length of the pendulum for it to have a period of 1 s when it operates at $20^{\circ} \mathrm{C}$. The period of the pendulum is related to its length, l, and the acceleration due to gravity, g, as

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{1}{g}}, \\
& \text { or } \\
& l=\frac{T^{2} g}{4 \pi^{2}} .
\end{aligned}
$$

For $T=1 \mathrm{~s}$,

$$
l=\frac{9.8}{4 \pi^{2}} \mathrm{~m}=0.248237 \mathrm{~m}
$$

Change in length of the brass second-pendulum when it operates at $0^{\circ} \mathrm{C}$, will be

$$
\begin{aligned}
\Delta l & =-0.248237 \times 19 \times 10^{-6} \times 20 \mathrm{~m} \\
& =-0.000094 \mathrm{~m} .
\end{aligned}
$$

The length of the pendulum of the clock at $0^{\circ} \mathrm{C}$ will therefore be

$$
\begin{aligned}
l^{\prime}=l-\Delta l & =(0.248237-0.000094) \mathrm{m} \\
& =0.2481429 \mathrm{~m}
\end{aligned}
$$

This clock will show 1 -second lapse after each period of the pendulum. The period of oscillation of the pendulum at $0^{\circ} \mathrm{C}$ will be

$$
T^{\prime}=2 \pi \sqrt{\frac{0.2481429}{9.8}} \mathrm{~s}=0.9998106 \mathrm{~s}
$$

That is when time lapse is 0.9998106 s the clock shows that 1 s has lapsed.
Therefore, error in 1 s is
$=(1.0-0.9998106) \mathrm{s}=1.894 \times 10^{-4} \mathrm{~s}$.
Error in 1 hour will be $1.894 \times 10^{-4} \times 3600 \mathrm{~s}=0.68 \mathrm{~s}$.

