200.

Problem 22.45 (RHK)

Three equal-length straight rods, of aluminium, invar, and steel, all at 20° C, form an equilateral triangle with hinge pins at the vertices. We have to find the temperature at which the angle opposite the invar rod will become 59.95°.

The linear thermal coefficients of these materials are $\alpha_{invar} = 0.7 \times 10^{-6} / \text{C}^0$, $\alpha_{steel} = 11 \times 10^{-6} / \text{C}^0$ and

Solution:

 $\alpha_{Al} = 23 \times 10^{-6} / C^0.$

The linear thermal coefficients of these materials are

$$\alpha_{invar} = 0.7 \times 10^{-6} / C^0$$
,

$$\alpha_{steel} = 11 \times 10^{-6} / C^0$$
, and

 $\alpha_{Al} = 23 \times 10^{-6} / \text{C}^0.$

Let *l* be the length of the rods at 20° C. When the temperature of the rods becomes 20° C + ΔT C^{\circ} the

changes in the lengths of the rods will be determined by the coefficients of their linear expansion. We have

$$\Delta l_{invar} = l\alpha_{invar} \Delta T,$$

$$\Delta l_{steel} = l\alpha_{steel} \Delta T,$$

and

$$\Delta_{Al} = l\alpha_{Al}\Delta T.$$

Using the trigonometric property of a triangle that $a^2 = b^2 + c^2 - 2bc\cos\theta$,

we have the relation,

$$(1 + \alpha_{invar}\Delta T)^{2} = (1 + \alpha_{steel}\Delta T)^{2} + (1 + \alpha_{Al}\Delta T)^{2}$$
$$-2(1 + \alpha_{steel}\Delta T)(1 + \alpha_{Al}\Delta T)\cos 59.95^{0}.$$

Neglecting terms of order $\alpha^2 (\Delta T)^2$, we get

$$1 + 2\alpha_{invar}\Delta T = 1 + 2\alpha_{steel}\Delta T + 1 + 2\alpha_{Al}\Delta T - 2(1 + \alpha_{steel}\Delta T + \alpha_{Al}\Delta T)\cos 59.95^{\circ}.$$

Substituting the values of α_{invar} , α_{Al} , and α_{steel} , we solve the above equation for ΔT . We find $\Delta T = 46.4 \text{ C}^{0}$.

Therefore, the temperature at which the angle opposite the invar bar will become 59.95° will be 66.4° C.