200. 

## Problem 22.45 (RHK)

Three equal-length straight rods, of aluminium, invar, and steel, all at $20^{\circ} \mathrm{C}$, form an equilateral triangle with hinge pins at the vertices. We have to find the temperature at which the angle opposite the invar rod will become $59.95^{\circ}$.

The linear thermal coefficients of these materials are

$$
\begin{aligned}
& \alpha_{\text {invar }}=0.7 \times 10^{-6} / \mathrm{C}^{0}, \alpha_{\text {steel }}=11 \times 10^{-6} / \mathrm{C}^{0} \text { and } \\
& \alpha_{A l}=23 \times 10^{-6} / \mathrm{C}^{0} .
\end{aligned}
$$

## Solution:



The linear thermal coefficients of these materials are

$$
\begin{aligned}
& \alpha_{\text {in var }}=0.7 \times 10^{-6} / \mathrm{C}^{0} \\
& \alpha_{\text {steel }}=11 \times 10^{-6} / \mathrm{C}^{0}, \text { and }
\end{aligned}
$$

$$
\alpha_{A l}=23 \times 10^{-6} / \mathrm{C}^{0}
$$

Let $l$ be the length of the rods at $20^{\circ} \mathrm{C}$. When the temperature of the rods becomes $20^{\circ} \mathrm{C}+\Delta T \mathrm{C}^{0}$ the
changes in the lengths of the rods will be determined by the coefficients of their linear expansion. We have
$\Delta l_{i v v a r}=l \alpha_{\text {invar }} \Delta T$,
$\Delta l_{\text {steel }}=l \alpha_{\text {seel }} \Delta T$,
and
$\Delta_{A l}=l \alpha_{A l} \Delta T$.
Using the trigonometric property of a triangle that
$a^{2}=b^{2}+c^{2}-2 b c \cos \theta$,
we have the relation,

$$
\begin{aligned}
\left(1+\alpha_{\text {invar }} \Delta T\right)^{2} & =\left(1+\alpha_{\text {steel }} \Delta T\right)^{2}+\left(1+\alpha_{A l} \Delta T\right)^{2} \\
& -2\left(1+\alpha_{\text {steel }} \Delta T\right)\left(1+\alpha_{A l} \Delta T\right) \cos 59.95^{0} .
\end{aligned}
$$

Neglecting terms of order $\alpha^{2}(\Delta T)^{2}$, we get

$$
\begin{aligned}
1+2 \alpha_{\text {invar }} \Delta T & =1+2 \alpha_{\text {steel }} \Delta T+1+2 \alpha_{A l} \Delta T \\
& -2\left(1+\alpha_{\text {steel }} \Delta T+\alpha_{A l} \Delta T\right) \cos 59.95^{\circ} .
\end{aligned}
$$

Substituting the values of $\alpha_{i \text { ivvar }}, \alpha_{A l}$, and $\alpha_{\text {steel }}$, we solve the above equation for $\Delta T$. We find $\Delta T=46.4 \mathrm{C}^{0}$.

Therefore, the temperature at which the angle opposite the invar bar will become $59.95^{\circ}$ will be $66.4^{\circ} \mathrm{C}$.

