199.

Problem 22.43(RHK)

A 1.28-m-long vertical glass tube is half-filled with a liquid at $20.0^{\circ} \mathrm{C}$. We have to find the change in height of the liquid column when the tube is heated to $33.0^{\circ} \mathrm{C}$. We may assume that $\alpha_{\text {glass }}=1.1 \times 10^{-5} / \mathrm{C}^{0}$ and $\beta_{\text {liquid }}=4.2 \times 10^{-5} / \mathrm{C}^{0}$.

Solution:

Let A be the cross-sectional area of the tube. The volume of the liquid, $V_{\text {liquid }}$, at $20.0^{\circ} \mathrm{C}$ will be

$$
V_{\text {liquid }}=A \times 0.64 \mathrm{~m}^{3} .
$$

The change in the volume of the liquid when it is heated to $33.0^{\circ} \mathrm{C}$ will be

$$
\begin{aligned}
\Delta V_{\text {liquid }} & =\beta V_{\text {liquid }} \Delta T \\
& =4.2 \times 10^{-5} \times 0.64 A \times 13 \mathrm{~m}^{3} \\
& =34.94 \times 10^{-5} \mathrm{Am}^{3} .
\end{aligned}
$$

Therefore, the volume of the liquid at $33.0^{\circ} \mathrm{C}$ will be

$$
\begin{aligned}
V_{\text {liquid }}\left(33.0^{0} \mathrm{C}\right) & =A\left(0.64+34.94 \times 10^{-5}\right) \mathrm{m}^{3} \\
& =0.64035 A \mathrm{~m}^{3} .
\end{aligned}
$$

The cross-sectional area of the glass tube would also increase due to thermal expansion when the tube is heated to $33.0^{\circ} \mathrm{C}$ from $20.0^{\circ} \mathrm{C}$. The change in the cosssectional area will be

$$
\begin{aligned}
\Delta A & =2 \alpha_{\text {glass }} \Delta T \\
& =2 \times 1.1 \times 10^{-5} \times 13 \times A \mathrm{~m}^{2} \\
& =0.000286 \mathrm{~A} \mathrm{~m}^{2} .
\end{aligned}
$$

And

$$
A+\Delta A=1.0000286 A \mathrm{~m}^{2}
$$

Let the height of the liquid column in the glass tube at $33.0^{\circ} \mathrm{C}$ be $h \mathrm{~m}$.

Then
(1.000286) $A h=0.64305 A$
or
$h=\frac{0.64035}{1.000286} \mathrm{~m}=0.64017 \mathrm{~m}$.
Therefore, the change in height of the liquid in the glass tube will be

$$
\begin{aligned}
h\left(33^{0} \mathrm{C}\right)-h\left(20^{\circ} \mathrm{C}\right) & =(0.64017-0.64) \mathrm{m} \\
& =0.17 \mathrm{~mm}
\end{aligned}
$$

