927.

Problem 56.33 (RHK)

We have to show (a) that the number N of photons radiated, per unit area per unit time, by a cavity radiator at temperature T is given by

$$
N=\int_{0}^{\infty} \frac{R(\lambda)}{h c / \lambda} d \lambda \approx \frac{30 \sigma}{\pi^{4} k} T^{3}
$$

In evaluating the integral, we will ignore " 1 " in the denominator of $R(\lambda)$. (b) We have to show that to the same approximation, the fraction of photons by number, with energies greater than 2.2 MeV at a temperature of $9 \times 10^{8} \mathrm{~K}$ is 2.1×10^{-10}.

Solution:

The radiated power per unit area that extends from λ to $\lambda+d \lambda$ is given by the Planck's blackbody radiation law,

$$
R(\lambda)=\frac{2 \pi c^{2} h}{\lambda^{5}} \frac{1}{e^{h c / \lambda k T}-1} .
$$

The energy of a photon of wavelength λ is $h c / \lambda$.
Therefore, the number of photons having wavelength λ
emitted per unit area per second by a blackbody at temperature T will be given by
$\frac{R(\lambda) d \lambda}{h c / \lambda}$,
and therefore, the number N of photons radiated, per unit area per unit time, by a cavity radiator at temperature T will be given by
$N=\int_{0}^{\infty} \frac{R(\lambda)}{h c / \lambda} d \lambda=\int_{0}^{\infty} \frac{2 \pi c^{2} h}{\lambda^{5}} \times \frac{1}{e^{h c / \lambda k T}-1} \times \frac{\lambda}{h c} d \lambda$.
In evaluating the integral, we will ignore " 1 " in the denominator of $R(\lambda)$. In this approximation

$$
\begin{aligned}
N=\int_{0}^{\infty} \frac{R(\lambda)}{h c / \lambda} d \lambda & \approx \int_{0}^{\infty} \frac{2 \pi c^{2} h}{\lambda^{5}} \times \frac{1}{e^{h c / \lambda k T}} \times \frac{\lambda}{h c} d \lambda \\
& =(2 \pi c) \int_{0}^{\infty} \frac{e^{-h c / \lambda k T}}{\lambda^{4}} d \lambda .
\end{aligned}
$$

For evaluating this integral, we make the change of variable

$$
\frac{h c}{\lambda k T}=x,
$$

and

$$
-\frac{h c}{k T \lambda^{2}} d \lambda=d x .
$$

$N=(2 \pi c)\left(\frac{k T}{h c}\right)^{3} \int_{0}^{\infty} x^{2} e^{-x} d x=(2 \pi c)\left(\frac{k T}{h c}\right)^{3} \times 2$,
as, $\int_{0}^{\infty} x^{2} e^{-x} d x=2$.
Therefore,
$N=\frac{4 \pi k^{3} T^{3}}{h^{3} c^{2}}$.
Stefan-Boltzmann constant

$$
\sigma=\frac{2 \pi^{5} k^{4}}{15 c^{2} h^{3}} .
$$

We thus find that

$$
N=\frac{4 \pi k^{3} T^{3}}{h^{3} c^{2}}=\frac{4 \pi k^{3} \sigma}{h^{3} c^{2}\left(2 \pi^{5} k^{4} / 15 h^{3} c^{2}\right)} T^{3}=\frac{30 \sigma}{\pi^{4} k} T^{3} .
$$

(b)

We will show that to the same approximation, the fraction of photons by number, with energies greater than 2.2 MeV at a temperature of $9 \times 10^{8} \mathrm{~K}$ is 2.1×10^{-10}. Photons with energy greater than 2.2 MeV will have wavelength $\lambda \leq \lambda_{2.2 \mathrm{MeV}}$,

$$
\begin{gathered}
\lambda_{2.2 \mathrm{Mev}}=\frac{h c}{2.2 \mathrm{MeV}}=\frac{4.14 \times 10^{-21} \mathrm{Mev} . \mathrm{s} \times 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{2.2 \mathrm{MeV}} \\
=5.65 \times 10^{-13} \mathrm{~m} .
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
x_{\min }=\frac{h c}{\lambda_{2.2 \mathrm{MeV}} k T} & =\frac{6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{5.65 \times 10^{-13} \mathrm{~m} \times 1.380 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \times 9 \times 10^{8} \mathrm{~K}} \\
& =2.83 \times 10=28.3
\end{aligned}
$$

And,

$$
\begin{aligned}
N_{\geq 2.2 \mathrm{MeV}} & =(2 \pi c)\left(\frac{k T}{h c}\right)^{3} \int_{x_{\min }}^{\infty} x^{2} e^{-x} d x \\
& =(2 \pi c)\left(\frac{k T}{h c}\right)^{3}\left[e^{-x_{\min }}\left(x_{\min }^{2}+2 x_{\min }+2\right)\right] \\
& =\frac{15 \sigma}{\pi^{4} k} T^{3}\left[e^{-x_{\min }}\left(x_{\min }^{2}+2 x_{\min }+2\right)\right] .
\end{aligned}
$$

Therefore,

$$
\frac{N_{\geq 2.2 \mathrm{MeV}}}{N}=\frac{1}{2} \times e^{-x_{\min }}\left(x_{\min }^{2}+2 x_{\min }+2\right)
$$

And,

$$
\begin{aligned}
\frac{N_{\geq 2.2 \mathrm{MeV}}}{N} & =\frac{1}{2} \times e^{-28.3}\left(28.3^{2}+2 \times 28.3+2\right) \\
& =2.2 \times 10^{-10}
\end{aligned}
$$

