923.

Problem 56.30 (RHK)

We have to answer whether the universe will continue to expand forever. For attacking this problem, we make the reasonable assumption that the recessional speed of v of a galaxy a distance r from us is determined only by the matter that lies inside a sphere of radius r centred on us. If the total mass inside this sphere is M, the escape speed $v_{\mathrm{e}}=\sqrt{2 G M / r}$. (a) We have to show that the average density ρ inside the sphere must at least equal to the value given by

$$
\rho=3 H^{2} / 8 \pi G
$$

to prevent unlimited expansion. (b) We have to evaluate this "critical density" numerically; and have to express our answer in terms of H -atoms $/ \mathrm{m}^{3}$. Measurements of the actual density are difficult and complicated by the presence of the dark matter.

Solution:

We make the reasonable assumption that the recessional speed of v of a galaxy a distance r from us is determined only by the matter that lies inside a sphere of radius r centred on us. The amount of mass contained inside a sphere of radius r and uniform density ρ is

$$
M=\frac{4 \pi r^{3} \rho}{3} .
$$

If the total mass inside this sphere is M, the escape speed $v_{\mathrm{e}}=\sqrt{2 G M / r}$.

We thus have the following expression for the escape speed

$$
\begin{aligned}
v_{\mathrm{e}}=\sqrt{2 G M / r} & =\left(\frac{2 G \times\left(4 \pi r^{3} \rho / 3\right)}{r}\right)^{1 / 2} \\
& =\sqrt{\frac{8 \pi G \rho r^{2}}{3}} .
\end{aligned}
$$

According to the Hubble's law, the recessional speed of a galaxy at a distance r from us is
$v=H r$, where H is the Hubble's constant. If the universe is to be prevented from unlimited expansion $v \leq v_{\mathrm{e}}$.

Therefore, the condition for the density for a closed universe is given by
$v=v_{\mathrm{e}}$,
or
$H r=\sqrt{\frac{8 \pi G \rho r^{2}}{3}}$,
or
$H^{2} r^{2}=\frac{8 \pi G \rho r^{2}}{3}$,
or
$\rho_{c}=\frac{3 H^{2}}{8 \pi G}$.
(b)

We will evaluate this "critical density" numerically; and express our answer in terms of H -atoms $/ \mathrm{m}^{3}$.

$$
\begin{aligned}
\rho_{c}=3 H^{2} / 8 \pi G & =\frac{3 \times\left(67 \mathrm{~km} \mathrm{~s}^{-1} / \mathrm{Mpc}\right)^{2}}{8 \pi \times 6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}} \\
& =\frac{3 \times\left(67 \mathrm{~km} \mathrm{~s}^{-1} / 3.084 \times 10^{19} \mathrm{~km}\right)^{2}}{8 \pi \times 6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}} \\
& =8.45 \times 10^{-27} \mathrm{~kg} \cdot \mathrm{~m}^{-3} \\
& =8.45 \times 10^{-27} \times\left(\frac{6.02 \times 10^{23}}{1.00797 \times 10^{-3}}\right) \text { H-atoms m} \\
& =5.04 \mathrm{H}-\text { atoms m}
\end{aligned}
$$

