916.

Problem 56.22 (RHK)

We have to analyze the following decays or reactions in terms of the quark contents of the particles:

(a)
$$\Sigma^{-} \to n + \pi^{-}$$
; (b) $K^{0} \to \pi^{+} + \pi^{-}$; (c) $\pi^{+} + p \to \Sigma^{+} + K^{+}$; (d) $\gamma + n \to \pi^{-} + p$.

Solution:

We write the quark contents of the particles involved in the decays and reactions that we are analyzing.

$$p = uud$$
 $n = udd$ $\Sigma^{+} = uus$ $\Sigma^{-} = dds$
 $\pi^{+} = u\overline{d}$ $\pi^{-} = d\overline{u}$ $K^{+} = u\overline{s}$ $K^{0} = d\overline{s}$

(a)

We write the quark contents of the particles in the decay $\Sigma^- \to n + \pi^-.$ We get $dds \to udd + d\overline{u} \ .$

Cancelling the two dd from the left and the right sides of the decay relation, we get

$$s \rightarrow d + u + \overline{u}$$
.

That is in the weak interaction process an s quark is transformed into a d quark and a $u\bar{u}$ pair is created from the decay energy.

(b)

We write the quark contents of the decay process

$$K^0 \rightarrow \pi^+ + \pi^-$$
. We get

$$d\overline{s} \rightarrow u\overline{d} + d\overline{u}$$
.

Cancelling d from the left and the right sides of the decay process relation, we get

$$\overline{s} \rightarrow \overline{d} + u + \overline{u}$$
.

That is in the weak interaction process an \overline{s} quark is transformed into a \overline{d} quark and a $u\overline{u}$ pair is created from the decay energy.

(c)

We write the quark contents of the particles in the reaction $\pi^+ + p \rightarrow \Sigma^+ + K^+$. We get $u\overline{d} + uud \rightarrow uus + u\overline{s}$.

By cancelling out uuu from the left and the right hand sides of the reaction, we note that $d\overline{d}$ pair goes into $s\overline{s}$ pair. The reaction process takes place due to strong force.

(d)

We write the quark contents of the particles in the reaction $\gamma + n \rightarrow \pi^- + p$. We get $udd \rightarrow d\overline{u} + uud$.

In this reaction process which is due to force of electromagnetic interaction udd goes into udd plus $u\bar{u}$ pair.

