915.

Problem 56.21 (RHK)

We have to explain using quark model why there are no known mesons with Q = +1 and S = -1 or with Q = -1 and S = +1.

Solution:

Properties of the fundamental quarks are as given in the

following table:

		KKU			
Quark	Symbol	Charge (e)	Spin	Baryon Number	Strangeness
Up	u	$+\frac{2}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	0
Down	d	$-\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	0
Strange	S	$-\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	-1

The charge, baryon number, and strangeness of \overline{u} , \overline{d} , and \overline{s} are opposite of u, d, and s, respectively.

Mesons have baryon number 0, therefore they comprise of one quark and one anti-quark. A meson with charge Q = +1 can either be the combination $u\overline{d}$, or $u\overline{s}$. The strangeness of $u\overline{d}$ is 0 and that of $u\overline{s}$ is +1. Therefore, there is no known meson with Q = +1 and S = -1. Meson with Q = -1 has to be the quark combination $\overline{u}d$ or $\overline{u}s$. The strangeness of $\overline{u}d$ is zero and that of $\overline{u}s$ is -1. Therefore, there is no known meson with Q = -1 and S = +1.

