915.

Problem 56.21 (RHK)

We have to explain using quark model why there are no known mesons with $Q=+1$ and $S=-1$ or with $Q=-1$ and $S=+1$.

Solution:

Properties of the fundamental quarks are as given in the following table:

Quark	Symbol	Charge (e)	Spin	Baryon Number	Strangeness
Up	u	$+\frac{2}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	0
Down	d	$-\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	0
Strange	s	$-\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	-1

The charge, baryon number, and strangeness of $\overline{\mathrm{u}}, \overline{\mathrm{d}}$, and \bar{s} are opposite of u, d, and s, respectively.

Mesons have baryon number 0 , therefore they comprise of one quark and one anti-quark. A meson with charge $Q=+1$ can either be the combination $\mathrm{u} \overline{\mathrm{d}}$, or $\mathrm{u} \overline{\mathrm{s}}$. The strangeness of $u \bar{d}$ is 0 and that of $u \bar{s}$ is +1 . Therefore, there is no known meson with $Q=+1$ and $S=-1$. Meson with $Q=-1$ has to be the quark combination $\bar{u} \mathrm{~d}$ or $\overline{\mathrm{u}}$. The strangeness of $\overline{\mathrm{u}} \mathrm{d}$ is zero and that of $\overline{\mathrm{u}} \mathrm{s}$ is -1 . Therefore, there is no known meson with $Q=-1$ and $S=+1$.

