914.

Problem 56.20 (RHK)

Using the up, down, and strange quarks only, we have to construct, if possible, a baryon (a) with $Q=+1$ and $S=-2$; (b) with $Q=+2$ and $S=0$.

Solution:

Properties of the fundamental quarks are as given in the following table:

Quark	Symbol	Charge (e)	Spin	Baryon Number	Strangeness
Up	u	$+\frac{2}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	0
Down	d	$-\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	0
Strange	s	$-\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	-1

(a)

A baryon will comprise of three quarks. We note that a baryon with strangeness $S=-2$ has to necessarily have
out of the three quarks two s, which will have charge $-\frac{2}{3}$. Therefore, a baryon with $Q=+1$ and $S=-2$ is not possible.
(b)

A baryon with $Q=+2$ and $S=0$ will be the three quark combination uuu.

