913.

Problem 56.19 (RHK)

We have to find the quark combinations which form
(a) λ^{0},
(b) Ξ^{0}.

Solution:

Properties of the fundamental quarks are as given in the following table:

Quark	Symbol	Charge (e)	Spin	Baryon Number	Strangeness
Up	u	$+\frac{2}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	0
Down	d	$-\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	0
Strange	s	$-\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	-1

(a) λ^{0}

As λ^{0} is a baryon with baryon number 1 , it consists of three quarks, and as its charge is zero and its strangeness is -1 , it is described by the quark combination uds.
(b) Ξ^{0}

As Ξ^{0} is a baryon with baryon number 1 , it consists of three quarks, and as its charge is zero and its strangeness is -2 , it is described by the quark combination uss.

