Problem 56.18 (RHK)

We have to determine the identity of the baryons formed from the following combinations of quarks: (a) ddu; (b) uus; (c) ssd. We have to check the answers with reference to the baryon octet.

Solution:

Properties of the fundamental quarks are as given in the following table:

Quark	Symbol	Charge (e)	Spin	Baryon Number	Strangeness
Up	u	$+\frac{2}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	0
Down	d	$-\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	0
Strange	S	$-\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{3}$	-1

We note that all the three combinations ddu, uus, and ssd have baryon number $1\left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3}\right)$ and a spin of $\frac{1}{2}, \frac{3}{2}$. We consider the baryon with spin $\frac{1}{2}$.

(a) ddu

From the table we note that the charge of ddu is 0 $\left(-\frac{1}{3} - \frac{1}{3} + \frac{2}{3} = 0\right)$ and its strangeness is 0. Therefore, it represents a neutron n.

(b) uus

From the table we note that the charge of uus is e and its strangeness is -1. Therefore, uus represents Σ^- .

(c) ssd

From the table we note that the charge of ssd is -e and its strangeness is -2. Therefore, ssd represents Ξ^- .