910.

Problem 45.11P (HRW)

A stationary particle m_{0} decays into two particles m_{1} and m_{2}, which move off with equal but oppositely directed momenta. We have to show that the kinetic energy K_{1} of m_{1} is given by

$$
K_{1}=\frac{1}{2 E_{0}}\left[\left(E_{0}-E_{1}\right)^{2}-E_{2}^{2}\right],
$$

where m_{0}, m_{1} and m_{2} are masses and E_{0}, E_{1} and E_{2} are the corresponding rest energies.

Solution:

Let the magnitude of momentum of the final particles be p. From conservation of energy, we note that the sum of relativistic energies of the final particles m_{1} and m_{2} has to be equal to the rest mass energy of the initial particle m_{0}.

We thus have the equation

$$
E_{0}=\left(p^{2} c^{2}+E_{1}^{2}\right)^{1 / 2}+\left(p^{2} c^{2}+E_{2}^{2}\right)^{1 / 2}
$$

Or,
$E_{0}-\left(p^{2} c^{2}+E_{1}^{2}\right)^{1 / 2}=+\left(p^{2} c^{2}+E_{2}^{2}\right)^{1 / 2}$.
We square the above equation and carry out algebraic simplifications. We get

$$
\left(p^{2} c^{2}+E_{1}^{2}\right)^{1 / 2}=\frac{E_{0}^{2}+E_{1}^{2}-E_{2}^{2}}{2 E_{0}}
$$

The kinetic energy of the particle m_{1} will therefore be given by

$$
\begin{aligned}
K_{1}=\left(p^{2} c^{2}+E_{1}^{2}\right)^{1 / 2}-E_{1} & =\frac{E_{0}^{2}+E_{1}^{2}-E_{2}^{2}}{2 E_{0}}-E_{1} \\
& =\frac{\left(E_{0}-E_{1}\right)^{2}-E_{2}^{2}}{2 E_{0}} .
\end{aligned}
$$

