Problem 45.11P (HRW)

A stationary particle m_0 decays into two particles m_1 and m_2 , which move off with equal but oppositely directed momenta. We have to show that the kinetic energy K_1 of m_1 is given by

$$K_{1} = \frac{1}{2E_{0}} \left[\left(E_{0} - E_{1} \right)^{2} - E_{2}^{2} \right],$$

where m_0 , m_1 and m_2 are masses and E_0 , E_1 and E_2 are the corresponding rest energies.

Solution:

Let the magnitude of momentum of the final particles be p. From conservation of energy, we note that the sum of relativistic energies of the final particles m_1 and m_2 has to be equal to the rest mass energy of the initial particle m_0 .

We thus have the equation

$$E_0 = \left(p^2 c^2 + E_1^2\right)^{1/2} + \left(p^2 c^2 + E_2^2\right)^{1/2}.$$

Or,

$$E_0 - \left(p^2 c^2 + E_1^2\right)^{1/2} = + \left(p^2 c^2 + E_2^2\right)^{1/2}.$$

We square the above equation and carry out algebraic simplifications. We get

$$\left(p^{2}c^{2}+E_{1}^{2}\right)^{1/2}=\frac{E_{0}^{2}+E_{1}^{2}-E_{2}^{2}}{2E_{0}}.$$

The kinetic energy of the particle m_1 will therefore be given by

$$K_{1} = \left(p^{2}c^{2} + E_{1}^{2}\right)^{1/2} - E_{1} = \frac{E_{0}^{2} + E_{1}^{2} - E_{2}^{2}}{2E_{0}} - E_{1}$$
$$= \frac{\left(E_{0} - E_{1}\right)^{2} - E_{2}^{2}}{2E_{0}}.$$