907.

Problem 56.9 (RHK)

We have to calculate the range of the weak force between two neighbouring protons. We may assume that Z^{0} is the field particle. The mass of Z^{0}, $m_{\mathrm{Z}^{0}} c^{2}=91.2 \mathrm{GeV}$.

Solution:

Let the observation time for measuring the range of the weak force be Δt. As weak force between the protons is assumed to be due to the exchange of Z^{0}, the time Δt is determined by the uncertainty principle with
$\Delta E=m_{z^{\prime}} c^{2}=91.2 \mathrm{GeV}$. We have

$$
\Delta t=\frac{\mathrm{h}}{\Delta E}=\frac{6.582 \times 10^{-22} \mathrm{MeV} \mathrm{~s}}{91.2 \times 10^{3} \mathrm{MeV}}=7.22 \times 10^{-27} \mathrm{~s} .
$$

Assuming that field mediates with speed of light, the range of weak force between two protons will be

$$
\begin{aligned}
r_{\text {weak force }}=c \Delta t & =3 \times 10^{8} \times 7.22 \times 10^{-27} \mathrm{~m} \\
& =2.16 \times 10^{-18} \mathrm{~m} .
\end{aligned}
$$

