906.

Problem 56.8 (RHK)

A positive tau $\left(\tau^{+}\right.$, rest energy $\left.=1784 \mathrm{MeV}\right)$ is moving with 2200 MeV of kinetic energy in a circular path perpendicular to a uniform 1.2-T magnetic field. (a) We have to calculate the momentum of the tau in $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$. (b) We have to find the radius of the circular path.

Solution:

(a)

The kinetic energy K of a relativistic particle of rest mass energy $m c^{2}$ and momentum p is given by the equation

$$
K+m c^{2}=\left(p^{2} c^{2}+m^{2} c^{4}\right)^{1 / 2}
$$

The kinetic energy of the τ^{+}, rest energy $=1784 \mathrm{MeV}$, is 2200 MeV . We find the momentum of the particle from the relation

$$
\begin{aligned}
& \begin{aligned}
\left(p^{2} c^{2}+m^{2} c^{4}\right)^{1 / 2} & =K+m c^{2} \\
& =2200 \mathrm{MeV}+1784 \mathrm{MeV} \\
& =3984 \mathrm{MeV}
\end{aligned} \\
& \begin{aligned}
\therefore p^{2} c^{2}=\left(3984^{2}-1784^{2}\right)(\mathrm{MeV})^{2}
\end{aligned} \\
& \text { or } \\
& p c=3,562.2 \mathrm{MeV}
\end{aligned}
$$

Therefore, the momentum of τ^{+}is

$$
\begin{aligned}
p=\frac{3,562.2 \mathrm{MeV}}{c} & =\frac{3,562.2 \times 1.6 \times 10^{-13}}{3 \times 10^{8}} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\
& =1.899 \times 10^{-18} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} .
\end{aligned}
$$

(b)

The τ^{+}particle is moving in a circular orbit of radius R in a uniform magnetic field $B=1.2 \mathrm{~T}$, which is perpendicular to the plane of the orbit of the charged particle. For a relativistic particle of momentum p the equation of motion is
$\frac{p}{R}=e B$.
Therefore, the radius of the orbit of the τ^{+}particle will be equal to

$$
R=\frac{p}{e B}=\frac{1.899 \times 10^{-18}}{1.6 \times 10^{-19} \times 1.2} \mathrm{~m}=9.89 \mathrm{~m}
$$

