900.

Problem 55.57 (RHK)

Assume that a plasma temperature of $1.3 \times 10^{8} \mathrm{~K}$ is reached in a laser-fusion device. (a) We have to find the most probable speed of a deuteron at this temperature; (b) and calculate the distance such a deuteron would move in the confinement time of $2 \times 10^{-12} \mathrm{~s}$.

Solution:

(a)

The Maxwellian speed distribution, for a classical gas at temperature T and containing N molecules, is

$$
n(v)=4 \pi N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v^{2} e^{-m v^{2} / 2 k T}
$$

The most probable speed is the speed at which $n(v)$ has its maximum value. We find it by requiring that $d n(v) / d v=0$.

That is
$\left(2 v-v^{2} \times \frac{m v}{k T}\right) e^{-m v^{2} / 2 k T}=0$,
or
$v_{p}=\sqrt{\frac{2 k T}{m}}$.
The mass of a deuteron atom will be
$m_{2_{\mathrm{H}}}=\frac{2.0 \times 10^{-3} \mathrm{~kg}}{6.02 \times 10^{23}}=3.32 \times 10^{-27} \mathrm{~kg}$.
Therefore, the most probable speed of a deuteron at $1.3 \times 10^{8} \mathrm{~K}$ will be

$$
\begin{gathered}
\left(v_{2_{\mathrm{H}}}\right)_{p}=\sqrt{\frac{2 k T}{m_{2_{\mathrm{H}}}}}=\sqrt{\frac{2 \times 1.38 \times 10^{-23} \times 1.3 \times 10^{8}}{3.32 \times 10^{-27}}} \mathrm{~m} \mathrm{~s}^{-1} \\
=1.04 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} .
\end{gathered}
$$

(b)

The distance a deuteron having a speed of
$1.04 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ would move in the confinement time of $2 \times 10^{-12} \mathrm{~s}$ will be $d=1.04 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} \times 2 \times 10^{-12} \mathrm{~s}=2.08 \mu \mathrm{~m}$.

