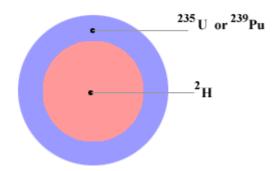
899.


Problem 44.51P (HRW)

In the figure an early proposal for a hydrogen bomb has been shown. The fusion fuel is deuterium,²H. The high temperature and particle density for fusion are provided by an atomic bomb "trigger," which involves a ²³⁵U or ²³⁹Pu fission fusion that is arranged to impress an imploding, comprehensive shock wave on the deuterium. The operative fusion reaction is

 $5^{2}H \rightarrow {}^{3}He + {}^{4}He + {}^{1}H + 2n$.

We have to calculate (a) the Q for the fusion reaction; (b) we have to calculate the rating of the fusion part of the bomb if it contains 500 kg of deuterium, 30.0% of which undergoes fusion. Needed atomic masses are

$^{1}\mathrm{H}$	1.007825 u	^{2}H	2.014 102 u
³ He	3.016029 u	⁴ He	4.002 603 u
n	1.008665 u.		

Solution:

The Q for the fusion reaction

 $5^{2}H \rightarrow {}^{3}He + {}^{4}He + {}^{1}H + 2n$

will be

 $= (5 \times 2.014 \ 102 - 3.016029 - 4.002 \ 603 - 1.007825 - 2 \times 1.008665) uc^{2}$ $= 0.026723 \ uc^{2} = 0.026723 \times 931.5 \ MeV$ $= 24.89 \ MeV.$

Number of ²H atoms in 500 kg of deuterium will be $N_{^{2}\text{H}} = \frac{6.02 \times 10^{23} \times 500 \times 10^{3} \text{ g}}{2 \text{ g}} = 15.05 \times 10^{28}.$

It is given that the design of the hydrogen bomb is such as allows 30.0% of deuterium to undergo fusion. As in each fusion reaction 5 nuclei of 2 H fuse, the total amount of energy that will be released in the bomb will be

$$E = \frac{15.05 \times 10^{28} \times 0.3 \times 24.89 \text{ MeV}}{5}$$

= 22.47 \times 10^{28} MeV = 22.47 \times 10^{28} \times 1.6 \times 10^{-13} J
= 35.96 \times 10^{15} J.

As one megaton of TNT is equivalent to 2.6×10^{28} MeV, the rating of the bomb in unit of megaton of TNT will be

 $\frac{22.47 \times 10^{28} \text{ MeV}}{2.6 \times 10^{28} \text{ MeV per megaton of TNT}} = 8.64 \text{ megaton of TNT}.$

