896.

Problem 55.54 (RHK)

Ordinary water consists of 0.015% by mass of "heavy water," in which one of the two hydrogen atoms is replaced with deuterium, ${ }^{2} \mathrm{H}$. We have to estimate the average fusion power that could be obtained if we "burned" all the ${ }^{2} \mathrm{H}$ in 1 litre of water in 1 day through the reaction ${ }^{2} \mathrm{H}+{ }^{2} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{n}+3.27 \mathrm{MeV}$.

Solution:

Ordinary water consists of 0.015% by mass of "heavy water," in which one of the two hydrogen atoms is replaced with deuterium, ${ }^{2} \mathrm{H}$. Therefore, mass of "heavy water" in 1 litre of water will be $=1000 \times 0.00015 \mathrm{~g}=0.15 \mathrm{~g}$.

Number of molecules of "heavy water" in 0.15 g , which will also be the number of ${ }^{2} \mathrm{H}$, will be

$$
N_{2_{\mathrm{H}}}=\frac{6.02 \times 10^{23} \times 0.15}{19}=4.75 \times 10^{21}
$$

In fusion of two ${ }^{2} \mathrm{H}$ nuclei through the process

$$
{ }^{2} \mathrm{H}+{ }^{2} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{n},
$$

3.27 MeV energy is released. Therefore, the total energy that can be released by burning off all ${ }^{2} \mathrm{H}$ nuclei contained in 1 litre of water will be

$$
\begin{aligned}
E & =\frac{3.27 \times 4.75 \times 10^{21}}{2} \mathrm{MeV} \\
& =7.77 \times 10^{21} \times 1.6 \times 10^{-13} \mathrm{~J}=12.42 \times 10^{8} \mathrm{~J} .
\end{aligned}
$$

If the burning of ${ }^{2} \mathrm{H}$ nuclei contained in 1 litre of water occurs in 1 day $\left(8.60 \times 10^{4} \mathrm{~s}\right)$, the average fusion power that will be available will be

$$
P=\frac{12.42 \times 10^{8} \mathrm{~J}}{8.60 \times 10^{4} \mathrm{~s}}=1.44 \times 10^{4} \mathrm{~W} .
$$

