896.

Problem 55.54 (RHK)

Ordinary water consists of 0.015% by mass of "heavy water," in which one of the two hydrogen atoms is replaced with deuterium, ²H. We have to estimate the average fusion power that could be obtained if we "burned" all the ²H in 1 litre of water in 1 day through the reaction ${}^{2}H + {}^{2}H \rightarrow {}^{3}He + n + 3.27$ MeV.

Solution:

Ordinary water consists of 0.015% by mass of "heavy water," in which one of the two hydrogen atoms is replaced with deuterium, ²H. Therefore, mass of "heavy water" in 1 litre of water will be

 $=1000 \times 0.00015 \text{ g} = 0.15 \text{ g}.$

Number of molecules of "heavy water" in 0.15 g, which will also be the number of 2 H, will be

$$N_{^{2}\text{H}} = \frac{6.02 \times 10^{^{23}} \times 0.15}{19} = 4.75 \times 10^{^{21}}.$$

In fusion of two ²H nuclei through the process ²H + ²H \rightarrow ³He + n, 3.27 MeV energy is released. Therefore, the total energy that can be released by burning off all ²H nuclei contained in 1 litre of water will be

$$E = \frac{3.27 \times 4.75 \times 10^{21}}{2} \text{ MeV}$$

= 7.77 × 10²¹ × 1.6 × 10⁻¹³ J = 12.42 × 10⁸ J.

If the burning of ²H nuclei contained in 1 litre of water occurs in 1 day $(8.60 \times 10^4 \text{ s})$, the average fusion power that will be available will be

